This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268835 #17 May 09 2021 07:54:52 %S A268835 0,1,2,1,2,3,2,3,2,3,4,5,2,1,4,3,2,3,4,5,4,3,6,5,2,3,2,1,4,5,4,3,2,3, %T A268835 4,5,4,3,6,5,4,5,4,3,6,7,6,5,2,3,4,3,2,3,2,3,4,5,6,5,4,3,4,3,2,3,4,5, %U A268835 4,3,6,5,4,5,4,3,6,7,6,5,4,5,6,5,4,5,4,5,6,7,8,7,6,5,6,5,2,3,4,3,4,5,4,5,2,3,4,5,2,1,4,3,4,5,6,5,6,5,6,5,4 %N A268835 Main diagonal of arrays A268833 & A268834: a(n) = A101080(n, A268820(n, 2*n)). %H A268835 Antti Karttunen, <a href="/A268835/b268835.txt">Table of n, a(n) for n = 0..1024</a> %H A268835 Indranil Ghosh, <a href="/A268835/a268835.txt">C program to generate the sequence</a> %F A268835 a(n) = A101080(n, A268820(n, 2*n)). %t A268835 A101080[n_, k_]:= DigitCount[BitXor[n, k], 2, 1];A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m=A006068[Floor[n/2]]}, 2m + Mod[Mod[n,2] + Mod[m, 2], 2]]]; a[r_, 0]:= 0; a[0, c_]:=c; a[r_, c_]:= A003188[1 + A006068[a[r - 1, c - 1]]]; Flatten@ Table[A101080[n, a[n, 2n]], {n, 0, 300}] (* _Indranil Ghosh_, Apr 02 2017 *) %o A268835 (Scheme) %o A268835 (define (A268835 n) (A101080bi n (A268820bi n (* 2 n)))) %o A268835 (define (A268835 n) (A268833bi n n)) ;; Code for A268833bi given in A268833. %o A268835 (PARI) %o A268835 b(n) = if(n<1, 0, b(n\2) + n%2); %o A268835 A101080(n, k) = b(bitxor(n, k)); %o A268835 A003188(n) = bitxor(n, n\2); %o A268835 A006068(n) = if(n<2, n, {my(m = A006068(n\2)); 2*m + (n%2 + m%2)%2}); %o A268835 A268820(r, c) = if(r==0, c, if(c==0, 0, A003188(1 + A006068(A268820(r - 1, c - 1))))); %o A268835 for(n=0, 300, print1(A101080(n, A268820(n, 2*n)),", ")) \\ _Indranil Ghosh_, Apr 02 2017 %o A268835 (Python) %o A268835 def A101080(n, k): return bin(n^k)[2:].count("1") %o A268835 def A003188(n): return n^(n//2) %o A268835 def A006068(n): %o A268835 if n<2: return n %o A268835 else: %o A268835 m=A006068(n//2) %o A268835 return 2*m + (n%2 + m%2)%2 %o A268835 def A268717(n): return 0 if n<1 else A003188(1 + A006068(n - 1)) %o A268835 def A268820(r, c): return c if r<1 else 0 if c<1 else A003188(1 + A006068(A268820(r - 1, c - 1))) %o A268835 print([A101080(n, A268820(n, 2*n)) for n in range(301)]) # _Indranil Ghosh_, Apr 02 2017 %Y A268835 Cf. A101080, A268820, A268833, A268834. %K A268835 nonn %O A268835 0,3 %A A268835 _Antti Karttunen_, Feb 15 2016