cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268842 Number of sequences with n copies each of 1,2,...,6 and longest increasing subsequence of length 6.

This page as a plain text file.
%I A268842 #11 Nov 03 2023 15:14:45
%S A268842 1,248749,20117051281,1077273394836829,47342758641593552281,
%T A268842 1878320344216429026862153,70803267480031877368227941803,
%U A268842 2612508237897293571677286548812861,96042041352156959435669839199503441435,3553102771891168237056005934820411063204249
%N A268842 Number of sequences with n copies each of 1,2,...,6 and longest increasing subsequence of length 6.
%H A268842 Alois P. Heinz, <a href="/A268842/b268842.txt">Table of n, a(n) for n = 1..100</a> (terms n=1..50 from Vaclav Kotesovec)
%H A268842 J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>
%F A268842 a(n) ~ 6^(6*n + 1/2) / (2*Pi*n)^(5/2). - _Vaclav Kotesovec_, Feb 21 2016
%Y A268842 Column k=6 of A047909.
%K A268842 nonn
%O A268842 1,2
%A A268842 _Alois P. Heinz_, Feb 14 2016