cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268843 Number of sequences with n copies each of 1,2,...,7 and longest increasing subsequence of length 7.

This page as a plain text file.
%I A268843 #9 Mar 02 2016 19:21:34
%S A268843 1,6439075,11260558754404,12084070123028603391,
%T A268843 10162884447920460534301136,7465237877942551321425443305798,
%U A268843 5078529731893937404909347067888886466,3315159778348807570604149155371730111763599,2124172213523649116114190361767338538457819064671
%N A268843 Number of sequences with n copies each of 1,2,...,7 and longest increasing subsequence of length 7.
%H A268843 Vaclav Kotesovec and Alois P. Heinz, <a href="/A268843/b268843.txt">Table of n, a(n) for n = 1..100</a> (terms n=1..36 from Vaclav Kotesovec)
%H A268843 J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>
%F A268843 a(n) ~ 7^(7*n + 1/2) / (2*Pi*n)^3. - _Vaclav Kotesovec_, Feb 21 2016
%Y A268843 Column k=7 of A047909.
%K A268843 nonn
%O A268843 1,2
%A A268843 _Alois P. Heinz_, Feb 14 2016