cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268868 a(n) is the sum of the prime factors (with repetition) of the sum of the preceding terms; a(1)=a(2)=1.

This page as a plain text file.
%I A268868 #44 Mar 21 2018 06:43:16
%S A268868 1,1,2,4,6,9,23,25,71,73,48,263,265,120,911,913,552,192,85,27,35,53,
%T A268868 296,66,455,289,48,188,5021,5023,159,190,379,946,900,600,97,204,118,
%U A268868 512,87,148,3886,23291,23293,71,896,11812,60,41359,2394,11508,5529,8977,200
%N A268868 a(n) is the sum of the prime factors (with repetition) of the sum of the preceding terms; a(1)=a(2)=1.
%H A268868 Paolo P. Lava, <a href="/A268868/b268868.txt">Table of n, a(n) for n = 1..2000</a>
%F A268868 a(n) = A001414(A096461(n-1)); n>=3. - _David James Sycamore_, Mar 11 2018
%e A268868 a(3) = 2 since the sum of all previous terms is 2 and the sum of prime factors of 2 with multiplicity is 2.
%e A268868 a(4) = 4 since the sum of all previous terms is 4 = 2 * 2; the sum of these factors is 4.
%e A268868 a(5) = 6 since the sum of all previous terms is 8 = 2 * 2 * 2; the sum of these factors is 6.
%e A268868 a(6) = 9 since the sum of all previous terms is 14 = 2 * 7. The sum of these factors is 9.
%e A268868 a(7) = 23 since the sum of all previous terms is the prime 23, etc.
%p A268868 A268868 := proc(n)
%p A268868     option remember;
%p A268868     if n <= 2 then
%p A268868         1;
%p A268868     else
%p A268868         A001414(add(procname(i),i=1..n-1)) ;
%p A268868     end if;
%p A268868 end proc: # _R. J. Mathar_, May 06 2016
%t A268868 a = {1, 1}; Do[AppendTo[a, Total@ Flatten@ Apply[Table[#1, {#2}] &, FactorInteger@ Total@ a, {1}]], {53}]; a (* _Michael De Vlieger_, Feb 15 2016 *)
%t A268868 Nest[Append[#, Total@ Flatten@ (ConstantArray@@@ FactorInteger@ Total@ #)] &, {1, 1}, 53] (* _Michael De Vlieger_, Mar 14 2018 *)
%o A268868 (PARI) lista(nn) = {va = vector(nn); print1(va[1] = 1, ", "); print1(va[2] = 1, ", "); sp = vecsum(va); for (k=3, nn, f = factor(sp); va[k] = sum(j=1, #f~, f[j,1]*f[j,2]); print1(va[k], ", "); sp += va[k];);} \\ _Michel Marcus_, Feb 15 2016
%Y A268868 Cf. A001414, A269004 (similar sequence with initial terms 1,2).
%Y A268868 For records see A271927, A271928.
%Y A268868 Cf. A096461.
%K A268868 nonn
%O A268868 1,3
%A A268868 _David James Sycamore_, Feb 15 2016
%E A268868 Name edited and more terms from _Michel Marcus_, Feb 15 2016