A268881 Number of n X 3 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
2, 14, 84, 462, 2418, 12252, 60666, 295230, 1417452, 6732102, 31690914, 148080468, 687592338, 3175567374, 14597507076, 66827528094, 304831251762, 1386004252620, 6283722000714, 28414577975934, 128187044049948, 577056144993366
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0. .0..0..0. .1..0..0. .0..1..0. .0..1..1. .1..0..1. .1..0..0 ..0..1..0. .0..1..0. .1..1..0. .0..1..0. .0..0..0. .0..0..0. .1..0..0 ..1..0..0. .0..0..1. .0..0..1. .1..0..0. .1..0..0. .1..1..0. .1..1..0 ..0..0..1. .0..1..0. .1..0..0. .1..0..1. .1..0..0. .0..0..0. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268886.
Formula
Empirical: a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3) - 9*a(n-4).
Empirical g.f.: 2*x*(1 - 2*x)*(1 - x + x^2) / (1 - 5*x + 3*x^2)^2. - Colin Barker, Jan 15 2019