A268883 Number of nX5 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
10, 158, 2190, 27130, 317966, 3596174, 39670270, 429588382, 4585939726, 48401059362, 506108414670, 5251396681678, 54134020936742, 554930619106590, 5661171443312270, 57509255942550986, 582036972222995470
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..0..0. .1..0..0..0..1. .0..0..1..0..0. .0..1..0..1..0 ..1..0..0..1..0. .0..0..0..1..0. .1..0..0..1..0. .0..1..0..0..0 ..1..1..0..0..0. .0..1..0..0..0. .1..0..1..0..1. .0..0..0..1..0 ..0..0..1..0..1. .0..0..1..0..0. .1..0..0..0..1. .0..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268886.
Formula
Empirical: a(n) = 26*a(n-1) -241*a(n-2) +994*a(n-3) -2060*a(n-4) +2218*a(n-5) -1201*a(n-6) +290*a(n-7) -25*a(n-8) for n>9
Comments