A268884 Number of nX6 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
20, 475, 9996, 186732, 3283890, 55491832, 911930096, 14681855846, 232688402028, 3642322709900, 56444213311842, 867475989937560, 13239446101273360, 200865483664370358, 3031934392327858732, 45561723449682618252
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..0..0..0. .0..0..0..1..1..0. .1..0..0..0..1..1. .1..0..1..0..0..1 ..0..0..1..0..0..1. .0..1..0..0..0..1. .0..0..0..0..0..1. .0..0..1..0..0..1 ..1..0..0..1..0..1. .0..1..0..0..0..0. .1..0..1..0..0..0. .1..0..1..0..0..0 ..1..1..0..1..0..1. .0..0..0..0..0..0. .0..0..1..0..1..0. .0..1..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268886.
Formula
Empirical: a(n) = 42*a(n-1) -665*a(n-2) +5138*a(n-3) -21972*a(n-4) +55274*a(n-5) -83769*a(n-6) +76202*a(n-7) -40273*a(n-8) +11304*a(n-9) -1296*a(n-10) for n>12
Comments