cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268886 T(n,k)=Number of nXk binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1, 0, 2, 5, 0, 5, 14, 20, 0, 10, 54, 84, 71, 0, 20, 158, 501, 462, 235, 0, 38, 475, 2190, 4133, 2418, 744, 0, 71, 1340, 9996, 27130, 31956, 12252, 2285, 0, 130, 3740, 42362, 186732, 317966, 236960, 60666, 6865, 0, 235, 10204, 178400, 1187838, 3283890
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2016

Keywords

Comments

Table starts
.0.....1.......2.........5..........10............20..............38
.0.....5......14........54.........158...........475............1340
.0....20......84.......501........2190..........9996...........42362
.0....71.....462......4133.......27130........186732.........1187838
.0...235....2418.....31956......317966.......3283890........31427480
.0...744...12252....236960.....3596174......55491832.......800733668
.0..2285...60666...1706732....39670270.....911930096.....19876401224
.0..6865..295230..12034000...429588382...14681855846....483987898760
.0.20284.1417452..83485488..4585939726..232688402028..11611969197776
.0.59155.6732102.571836176.48401059362.3642322709900.275345016177616

Examples

			Some solutions for n=4 k=4
..0..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0. .0..1..0..0
..0..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..1..1. .0..1..0..0
..0..0..1..0. .1..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..0..0
..1..0..1..0. .1..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..0..0
		

Crossrefs

Column 2 is A054444(n-1).
Row 1 is A001629.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -31*a(n-2) +30*a(n-3) -9*a(n-4)
k=4: a(n) = 16*a(n-1) -88*a(n-2) +200*a(n-3) -208*a(n-4) +96*a(n-5) -16*a(n-6) for n>7
k=5: [order 8] for n>9
k=6: [order 10] for n>12
k=7: [order 14] for n>16
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 2*a(n-1) +5*a(n-2) -4*a(n-3) -11*a(n-4) -6*a(n-5) -a(n-6)
n=3: [order 9]
n=4: [order 16]
n=5: [order 26]
n=6: [order 42]
n=7: [order 68]