cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268888 Number of 3 X n binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 20, 84, 501, 2190, 9996, 42362, 178400, 732378, 2974934, 11933578, 47466417, 187325260, 734639334, 2865135348, 11121381104, 42989239524, 165564387000, 635557701344, 2432620417837, 9286486715514, 35366757558512, 134400104565934
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..1..0..1
..1..0..0..0. .0..0..0..1. .1..1..0..1. .0..0..1..1. .0..0..0..1
..1..0..1..1. .1..1..0..0. .0..0..0..0. .1..0..0..1. .0..0..1..0
		

Crossrefs

Row 3 of A268886.

Formula

Empirical: a(n) = 3*a(n-1) + 12*a(n-2) - 16*a(n-3) - 62*a(n-4) - 34*a(n-5) + 16*a(n-6) + 12*a(n-7) - a(n-8) - a(n-9).
Empirical g.f.: x^2*(2 - x)*(10 + 17*x + 13*x^2 + 6*x^3 + 2*x^4) / ((1 + x)*(1 - 2*x - 6*x^2 + x^4)^2). - Colin Barker, Jan 15 2019