A268888 Number of 3 X n binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
0, 20, 84, 501, 2190, 9996, 42362, 178400, 732378, 2974934, 11933578, 47466417, 187325260, 734639334, 2865135348, 11121381104, 42989239524, 165564387000, 635557701344, 2432620417837, 9286486715514, 35366757558512, 134400104565934
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..1..0..1 ..1..0..0..0. .0..0..0..1. .1..1..0..1. .0..0..1..1. .0..0..0..1 ..1..0..1..1. .1..1..0..0. .0..0..0..0. .1..0..0..1. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A268886.
Formula
Empirical: a(n) = 3*a(n-1) + 12*a(n-2) - 16*a(n-3) - 62*a(n-4) - 34*a(n-5) + 16*a(n-6) + 12*a(n-7) - a(n-8) - a(n-9).
Empirical g.f.: x^2*(2 - x)*(10 + 17*x + 13*x^2 + 6*x^3 + 2*x^4) / ((1 + x)*(1 - 2*x - 6*x^2 + x^4)^2). - Colin Barker, Jan 15 2019