A268890 Number of 5Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
0, 235, 2418, 31956, 317966, 3283890, 31427480, 299524050, 2777161184, 25505113994, 231143340184, 2077724593805, 18526267129268, 164165431218906, 1446558738555296, 12686251671077220, 110791183092125102
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..0..1. .1..0..0..0. .1..0..1..1. .1..0..0..0. .1..0..1..0 ..0..1..0..1. .0..0..0..1. .1..0..0..0. .0..0..0..1. .1..0..0..0 ..0..1..0..0. .1..0..0..0. .1..0..0..0. .1..1..0..1. .0..0..1..1 ..0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..1. .1..0..0..1 ..0..1..0..0. .1..0..1..1. .0..0..0..1. .0..0..0..1. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268886.
Formula
Empirical: a(n) = 2*a(n-1) +97*a(n-2) +116*a(n-3) -2923*a(n-4) -10986*a(n-5) +4951*a(n-6) +72992*a(n-7) +36740*a(n-8) -223968*a(n-9) -159382*a(n-10) +423052*a(n-11) +256370*a(n-12) -539504*a(n-13) -176570*a(n-14) +450908*a(n-15) +6166*a(n-16) -217920*a(n-17) +57416*a(n-18) +45120*a(n-19) -25021*a(n-20) +562*a(n-21) +2089*a(n-22) -388*a(n-23) -31*a(n-24) +14*a(n-25) -a(n-26)
Comments