cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268891 Number of 6Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.

This page as a plain text file.
%I A268891 #4 Feb 15 2016 11:37:54
%S A268891 0,744,12252,236960,3596174,55491832,800733668,11458879568,
%T A268891 159796058742,2205638713335,30049236232518,406011322471540,
%U A268891 5441799029248756,72482603197808516,960023683579703110,12655255863840772464
%N A268891 Number of 6Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
%C A268891 Row 6 of A268886.
%H A268891 R. H. Hardin, <a href="/A268891/b268891.txt">Table of n, a(n) for n = 1..210</a>
%F A268891 Empirical: a(n) = 2*a(n-1) +237*a(n-2) +556*a(n-3) -17745*a(n-4) -102122*a(n-5) +202421*a(n-6) +2379616*a(n-7) -22987*a(n-8) -27364786*a(n-9) -13031593*a(n-10) +199889692*a(n-11) +91121845*a(n-12) -1012462462*a(n-13) -190133151*a(n-14) +3595273076*a(n-15) -642988498*a(n-16) -8640634728*a(n-17) +4929067410*a(n-18) +12985931924*a(n-19) -13174973746*a(n-20) -9991379232*a(n-21) +18252268246*a(n-22) +272964868*a(n-23) -13058804606*a(n-24) +5323457016*a(n-25) +4041105222*a(n-26) -3401387484*a(n-27) -210272991*a(n-28) +912442186*a(n-29) -169777035*a(n-30) -118543140*a(n-31) +43493135*a(n-32) +6734614*a(n-33) -4652195*a(n-34) -21632*a(n-35) +259061*a(n-36) -13682*a(n-37) -7961*a(n-38) +524*a(n-39) +133*a(n-40) -6*a(n-41) -a(n-42)
%e A268891 Some solutions for n=3
%e A268891 ..1..0..0. .0..1..0. .1..0..1. .1..0..1. .1..0..1. .1..0..0. .0..0..1
%e A268891 ..0..1..0. .0..0..0. .0..1..0. .1..0..1. .1..0..0. .0..1..0. .1..0..0
%e A268891 ..0..0..1. .1..0..1. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..1..1
%e A268891 ..0..0..1. .1..0..0. .0..0..1. .1..1..0. .1..0..1. .0..1..0. .0..0..1
%e A268891 ..1..0..1. .1..1..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0
%e A268891 ..0..1..0. .0..0..1. .0..0..0. .1..0..1. .1..1..0. .0..1..1. .0..0..0
%Y A268891 Cf. A268886.
%K A268891 nonn
%O A268891 1,2
%A A268891 _R. H. Hardin_, Feb 15 2016