This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268896 #21 May 31 2016 03:57:13 %S A268896 1,3,5,6,8,10,16,18,20,36,38,40,76,78,80,156,158,160,316,318,320,636, %T A268896 638,640,1276,1278,1280,2556,2558,2560,5116,5118,5120,10236,10238, %U A268896 10240,20476,20478,20480,40956,40958 %N A268896 Start at a(0)=1. a(n) = a(n-1)+2 if n == 1,2 (mod 3) and a(n)=a(n-1)+a(n-3) if n == 0 (mod 3). %C A268896 See Mathematica section for an explicit formula for the n-th term. - _Benedict W. J. Irwin_, May 30 2016 %H A268896 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,-2). %F A268896 G.f.: ( 1+3*x+5*x^2+3*x^3-x^4-5*x^5 ) / ( (x-1)*(2*x^3-1)*(1+x+x^2) ). - _R. J. Mathar_, Apr 16 2016 %F A268896 a(3n) = A048487(n). a(3n+1) = A131051(n+1). a(3n+2)=A020714(n). - _R. J. Mathar_, Apr 16 2016 %t A268896 Simplify[Table[1/6 (10 (2^n)^(1/3) + 4 (-3 + 5 2^(n/3)) Cos[(2 n Pi)/3] + 5 2^((4 + n)/3)Sin[(n Pi)/3] (Sqrt[3] (-1 + 2^(1/3)) Cos[(n Pi)/3] + (1 + 2^(1/3)) Sin[(n Pi)/3]) - 4 (3 + Sqrt[3] Sin[(2 n Pi)/3])), {n, 0, 20}]] (* _Benedict W. J. Irwin_, May 30 2016 *) %K A268896 nonn,easy,less %O A268896 0,2 %A A268896 _Ravesh Sukhram_, Feb 27 2016