A268898 Number of n X 2 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
3, 36, 240, 1344, 6912, 33792, 159744, 737280, 3342336, 14942208, 66060288, 289406976, 1258291200, 5435817984, 23353884672, 99857989632, 425201762304, 1803886264320, 7627861917696, 32160715112448, 135239930216448
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..2. .0..1. .1..0. .0..1. .2..1. .2..0. .1..0. .1..0. .0..1. .0..1 ..2..1. .1..0. .1..1. .0..0. .0..1. .0..0. .1..2. .0..1. .0..1. .2..2 ..0..2. .1..0. .2..1. .1..1. .0..1. .1..2. .2..0. .0..2. .2..2. .0..0 ..2..1. .0..1. .2..1. .2..2. .2..0. .1..0. .0..0. .1..2. .1..1. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A268904.
Formula
Empirical: a(n) = 8*a(n-1) - 16*a(n-2).
Conjectures from Colin Barker, Jan 16 2019: (Start)
G.f.: 3*x*(1 + 4*x) / (1 - 4*x)^2.
a(n) = 4^(n-1) * (6*n-3).
(End)