A268900 Number of n X 4 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
36, 696, 9720, 118584, 1347192, 14644152, 154472184, 1594323000, 16185567096, 162200044728, 1608569870328, 15816054042936, 154394813276280, 1498006261495224, 14458132831535352, 138907883786523192
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..1. .1..0..1..2. .2..0..0..0. .2..1..0..0. .1..0..0..1 ..0..1..0..0. .1..2..2..1. .1..0..1..2. .1..0..0..0. .1..0..2..2 ..0..1..1..0. .2..1..0..1. .1..0..1..2. .0..1..0..0. .1..2..1..2 ..0..0..1..2. .2..1..2..0. .1..2..1..2. .2..1..0..0. .2..2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A268904.
Formula
Empirical: a(n) = 18*a(n-1) - 81*a(n-2) for n>3.
Conjectures from Colin Barker, Jan 16 2019: (Start)
G.f.: 12*x*(3 + 4*x + 9*x^2) / (1 - 9*x)^2.
a(n) = 8 * 3^(2*n-3) * (16*n-3) for n>1.
(End)