cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268904 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 0, 12, 36, 0, 36, 168, 240, 0, 96, 696, 1584, 1344, 0, 240, 2664, 9720, 12960, 6912, 0, 576, 9720, 54936, 118584, 98496, 33792, 0, 1344, 34344, 299088, 1004184, 1347192, 715392, 159744, 0, 3072, 118584, 1585800, 8250912, 17194680, 14644152, 5038848
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2016

Keywords

Comments

Table starts
.0.......3........12..........36............96............240..............576
.0......36.......168.........696..........2664...........9720............34344
.0.....240......1584........9720.........54936.........299088..........1585800
.0....1344.....12960......118584.......1004184........8250912.........66210264
.0....6912.....98496.....1347192......17194680......214142760.......2611960344
.0...33792....715392....14644152.....282550680.....5344944120......99308573208
.0..159744...5038848...154472184....4513169016...129834259704....3679171151832
.0..737280..34712064..1594323000...70609114584..3091414865040..133712637011640
.0.3342336.235146240.16185567096.1087342615224.72488795124312.4788143315276472

Examples

			Some solutions for n=4 k=4
..1..0..0..0. .0..1..2..1. .0..1..2..1. .1..0..0..0. .2..1..0..1
..0..0..0..0. .2..2..2..2. .0..1..0..0. .0..0..1..2. .2..1..2..2
..1..1..0..0. .1..0..1..0. .2..0..1..0. .1..0..0..0. .0..1..1..0
..2..1..0..0. .1..0..1..2. .1..0..0..0. .0..1..0..0. .0..0..0..0
		

Crossrefs

Row 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 8*a(n-1) -16*a(n-2)
k=3: a(n) = 12*a(n-1) -36*a(n-2)
k=4: a(n) = 18*a(n-1) -81*a(n-2) for n>3
k=5: a(n) = 30*a(n-1) -261*a(n-2) +540*a(n-3) -324*a(n-4)
k=6: a(n) = 50*a(n-1) -805*a(n-2) +4662*a(n-3) -12150*a(n-4) +14580*a(n-5) -6561*a(n-6)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2)
n=2: a(n) = 6*a(n-1) -9*a(n-2) for n>4
n=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>6
n=4: [order 6] for n>12
n=5: [order 14] for n>18
n=6: [order 18] for n>26
n=7: [order 54] for n>60