A268908 Number of 5 X n 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
0, 6912, 98496, 1347192, 17194680, 214142760, 2611960344, 31382176824, 372469407912, 4376985056856, 51011490408120, 590386685589432, 6792451934064264, 77748739088317848, 885979967930009496
Offset: 1
Keywords
Examples
Some solutions for n=3 ..2..2..1. .0..2..2. .2..1..2. .1..0..1. .2..1..2. .0..0..0. .2..1..0 ..2..0..1. .1..2..1. .2..1..0. .0..2..2. .0..2..1. .1..0..0. .2..1..0 ..1..2..1. .1..0..1. .0..0..1. .2..2..2. .1..2..2. .1..0..0. .2..1..0 ..1..0..0. .1..2..2. .1..2..2. .1..2..2. .1..2..2. .0..1..0. .2..1..2 ..0..0..0. .1..2..2. .1..1..0. .1..2..2. .2..2..1. .0..1..1. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268904.
Formula
Empirical: a(n) = 32*a(n-1) -384*a(n-2) +2200*a(n-3) -6494*a(n-4) +9016*a(n-5) -816*a(n-6) -14888*a(n-7) +18879*a(n-8) -5464*a(n-9) -7472*a(n-10) +8336*a(n-11) -3648*a(n-12) +768*a(n-13) -64*a(n-14) for n>18.
Comments