A268909 Number of 6Xn 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
0, 33792, 715392, 14644152, 282550680, 5344944120, 99308573208, 1821165633864, 33033242938536, 593761996675728, 10591066349377632, 187684309946743128, 3307315733915348808, 57997191529735867080, 1012715407159459735536
Offset: 1
Keywords
Examples
Some solutions for n=2 ..1..0. .0..0. .2..0. .0..1. .0..1. .1..1. .1..2. .0..1. .0..2. .1..0 ..1..0. .1..2. .1..2. .0..2. .0..0. .2..2. .2..1. .0..2. .2..2. .1..0 ..1..1. .1..0. .1..2. .2..1. .1..0. .1..2. .2..1. .2..2. .1..2. .0..1 ..0..0. .1..0. .1..0. .2..1. .1..2. .2..2. .2..1. .2..2. .2..1. .2..1 ..1..2. .1..2. .1..2. .2..2. .0..1. .2..1. .2..2. .2..1. .0..1. .1..0 ..1..2. .1..1. .1..2. .2..1. .0..1. .0..0. .0..0. .2..2. .2..2. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268904.
Formula
Empirical: a(n) = 60*a(n-1) -1466*a(n-2) +19056*a(n-3) -143515*a(n-4) +608478*a(n-5) -957350*a(n-6) -3924114*a(n-7) +27201539*a(n-8) -68079378*a(n-9) +46537423*a(n-10) +212613240*a(n-11) -785654632*a(n-12) +1389943104*a(n-13) -1544105168*a(n-14) +1125401088*a(n-15) -524553472*a(n-16) +142135296*a(n-17) -17040384*a(n-18) for n>26
Comments