A268943 Number of length-n 0..7 arrays with no repeated value unequal to the previous repeated value plus one mod 7+1.
8, 64, 504, 3928, 30344, 232696, 1773384, 13443064, 101433800, 762265720, 5707893576, 42605289208, 317113497800, 2354253598072, 17437541654088, 128885063291896, 950791205063624, 7001691181273720, 51477520840048968
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0. .7. .3. .6. .2. .5. .7. .0. .1. .2. .2. .0. .6. .3. .5. .7 ..7. .6. .5. .7. .1. .2. .7. .5. .1. .1. .4. .5. .4. .3. .5. .5 ..2. .3. .5. .6. .0. .0. .3. .5. .2. .3. .7. .2. .3. .1. .2. .6 ..1. .2. .0. .5. .3. .7. .5. .1. .0. .5. .5. .4. .5. .5. .5. .1 ..1. .0. .3. .3. .3. .0. .6. .5. .7. .1. .3. .4. .4. .6. .4. .6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 7 of A268944.
Formula
Empirical: a(n) = 13*a(n-1) - 34*a(n-2) - 56*a(n-3).
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: 8*x*(1 - 5*x - 7*x^2) / ((1 - 7*x)*(1 - 6*x - 8*x^2)).
a(n) = (-272*7^n + (153-37*sqrt(17))*(3-sqrt(17))^n + (3+sqrt(17))^n*(153+37*sqrt(17))) / 34.
(End)