A268945 Number of length-4 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.
10, 63, 220, 565, 1206, 2275, 3928, 6345, 9730, 14311, 20340, 28093, 37870, 49995, 64816, 82705, 104058, 129295, 158860, 193221, 232870, 278323, 330120, 388825, 455026, 529335, 612388, 704845, 807390, 920731, 1045600, 1182753, 1332970
Offset: 1
Keywords
Examples
Some solutions for n=9: ..9. .3. .4. .0. .0. .7. .3. .6. .2. .7. .3. .0. .7. .6. .5. .7 ..2. .7. .5. .9. .0. .5. .4. .7. .8. .8. .9. .8. .0. .3. .7. .2 ..6. .2. .3. .7. .8. .9. .9. .7. .3. .6. .6. .8. .8. .8. .9. .7 ..2. .5. .2. .4. .9. .7. .3. .2. .5. .0. .2. .9. .7. .1. .1. .9
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A268944.
Formula
Empirical: a(n) = n^4 + 4*n^3 + 3*n^2 + n + 1.
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: x*(10 + 13*x + 5*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)