cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268946 Number of length-5 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.

This page as a plain text file.
%I A268946 #8 Jan 17 2019 04:20:49
%S A268946 14,159,788,2615,6834,15239,30344,55503,95030,154319,239964,359879,
%T A268946 523418,741495,1026704,1393439,1858014,2438783,3156260,4033239,
%U A268946 5094914,6368999,7885848,9678575,11783174,14238639,17087084,20373863,24147690
%N A268946 Number of length-5 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.
%H A268946 R. H. Hardin, <a href="/A268946/b268946.txt">Table of n, a(n) for n = 1..210</a>
%F A268946 Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 3*n^2 + 2*n - 1.
%F A268946 Conjectures from _Colin Barker_, Jan 17 2019: (Start)
%F A268946 G.f.: x*(14 + 75*x + 44*x^2 - 8*x^3 - 6*x^4 + x^5) / (1 - x)^6.
%F A268946 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
%F A268946 (End)
%e A268946 Some solutions for n=9:
%e A268946 ..4. .1. .5. .8. .9. .1. .8. .3. .2. .9. .6. .3. .4. .3. .2. .7
%e A268946 ..4. .9. .9. .2. .5. .6. .2. .9. .2. .2. .9. .8. .9. .6. .9. .2
%e A268946 ..5. .8. .5. .9. .9. .0. .7. .1. .8. .3. .9. .5. .9. .8. .8. .6
%e A268946 ..8. .3. .8. .5. .0. .2. .0. .7. .2. .7. .6. .0. .8. .1. .1. .1
%e A268946 ..6. .4. .0. .8. .6. .7. .4. .0. .4. .8. .9. .6. .5. .1. .3. .0
%Y A268946 Row 5 of A268944.
%K A268946 nonn
%O A268946 1,1
%A A268946 _R. H. Hardin_, Feb 16 2016