cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268952 Number of length-n 0..4 arrays with no repeated value equal to the previous repeated value, with new values introduced in sequential order.

This page as a plain text file.
%I A268952 #9 Jan 17 2019 05:26:15
%S A268952 1,2,4,12,40,153,634,2785,12634,58409,272738,1280233,6024682,28383609,
%T A268952 133772018,630473513,2970963898,13996752665,65924951490,310433985929,
%U A268952 1461486107146,6879181490937,32374728610962,152339562845289
%N A268952 Number of length-n 0..4 arrays with no repeated value equal to the previous repeated value, with new values introduced in sequential order.
%H A268952 R. H. Hardin, <a href="/A268952/b268952.txt">Table of n, a(n) for n = 1..210</a>
%F A268952 Empirical: a(n) = 11*a(n-1) -31*a(n-2) -41*a(n-3) +268*a(n-4) -90*a(n-5) -692*a(n-6) +512*a(n-7) +576*a(n-8) -512*a(n-9) for n>11.
%F A268952 Empirical g.f.: x*(1 - 9*x + 13*x^2 + 71*x^3 - 154*x^4 - 197*x^5 + 483*x^6 + 210*x^7 - 546*x^8 - 24*x^9 + 192*x^10) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - x - 4*x^2)*(1 - 3*x - 8*x^2)). - _Colin Barker_, Jan 17 2019
%e A268952 Some solutions for n=8:
%e A268952 ..0. .0. .0. .0. .0. .0. .0. .0. .0. .0. .0. .0. .0. .0. .0. .0
%e A268952 ..1. .0. .1. .1. .1. .1. .1. .1. .1. .1. .1. .1. .0. .1. .1. .1
%e A268952 ..2. .1. .1. .2. .2. .2. .1. .2. .0. .2. .0. .2. .1. .0. .0. .2
%e A268952 ..1. .2. .2. .3. .1. .3. .2. .2. .2. .1. .2. .1. .0. .2. .2. .0
%e A268952 ..3. .0. .1. .4. .2. .2. .1. .3. .1. .3. .0. .3. .1. .2. .3. .1
%e A268952 ..4. .1. .3. .0. .0. .4. .2. .3. .1. .1. .3. .0. .2. .3. .4. .1
%e A268952 ..2. .2. .4. .1. .1. .3. .1. .4. .3. .0. .3. .3. .2. .4. .2. .2
%e A268952 ..0. .2. .0. .3. .0. .1. .0. .4. .2. .2. .1. .2. .1. .0. .1. .0
%Y A268952 Column 4 of A268956.
%K A268952 nonn
%O A268952 1,2
%A A268952 _R. H. Hardin_, Feb 16 2016