A268965 Number of n X 2 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
9, 60, 336, 1728, 8448, 39936, 184320, 835584, 3735552, 16515072, 72351744, 314572800, 1358954496, 5838471168, 24964497408, 106300440576, 450971566080, 1906965479424, 8040178778112, 33809982554112, 141836999983104
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0. .0..0. .0..1. .2..2. .1..2. .1..0. .2..2. .0..2. .2..1. .0..1 ..0..2. .1..1. .0..0. .1..1. .2..0. .0..0. .2..1. .2..1. .0..2. .2..2 ..2..2. .2..1. .2..2. .2..2. .0..1. .2..2. .2..1. .0..0. .1..2. .2..0 ..1..0. .2..1. .2..2. .2..1. .2..1. .1..0. .2..2. .0..0. .2..2. .1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A268971.
Formula
Empirical: a(n) = 8*a(n-1) - 16*a(n-2).
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: 3*x*(3 - 4*x) / (1 - 4*x)^2.
a(n) = 4^(n-1) * (6*n+3).
(End)