This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268971 #4 Feb 16 2016 13:47:08 %S A268971 3,9,9,24,60,27,60,240,336,81,144,912,2016,1728,243,336,3312,11664, %T A268971 15552,8448,729,768,11664,63792,136080,114048,39936,2187,1728,40176, %U A268971 339480,1125360,1504656,808704,184320,6561,3840,136080,1770048,9093528,18852912 %N A268971 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once. %C A268971 Table starts %C A268971 .....3........9.........24...........60............144..............336 %C A268971 .....9.......60........240..........912...........3312............11664 %C A268971 ....27......336.......2016........11664..........63792...........339480 %C A268971 ....81.....1728......15552.......136080........1125360..........9093528 %C A268971 ...243.....8448.....114048......1504656.......18852912........231730344 %C A268971 ...729....39936.....808704.....16061328......305242992.......5712070032 %C A268971 ..2187...184320....5598720....167226768.....4823705520.....137497776840 %C A268971 ..6561...835584...38071296...1709114256....74858700528....3251386055664 %C A268971 .19683..3735552..255301632..17218688400..1145496747312...75828095546544 %C A268971 .59049.16515072.1693052928.171498136464.17332683832944.1748970953035272 %H A268971 R. H. Hardin, <a href="/A268971/b268971.txt">Table of n, a(n) for n = 1..287</a> %F A268971 Empirical for column k: %F A268971 k=1: a(n) = 3*a(n-1) %F A268971 k=2: a(n) = 8*a(n-1) -16*a(n-2) %F A268971 k=3: a(n) = 12*a(n-1) -36*a(n-2) %F A268971 k=4: a(n) = 18*a(n-1) -81*a(n-2) for n>3 %F A268971 k=5: a(n) = 30*a(n-1) -261*a(n-2) +540*a(n-3) -324*a(n-4) %F A268971 k=6: a(n) = 50*a(n-1) -805*a(n-2) +4662*a(n-3) -12150*a(n-4) +14580*a(n-5) -6561*a(n-6) %F A268971 k=7: [order 8] %F A268971 Empirical for row n: %F A268971 n=1: a(n) = 4*a(n-1) -4*a(n-2) %F A268971 n=2: a(n) = 6*a(n-1) -9*a(n-2) for n>4 %F A268971 n=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>6 %F A268971 n=4: [order 6] for n>12 %F A268971 n=5: [order 14] for n>18 %F A268971 n=6: [order 18] for n>26 %F A268971 n=7: [order 54] for n>60 %e A268971 Some solutions for n=4 k=4 %e A268971 ..1..0..0..1. .2..1..0..1. .2..1..2..1. .2..1..2..1. .1..2..1..2 %e A268971 ..1..2..2..2. .0..0..2..2. .0..1..2..1. .1..2..2..1. .1..0..0..0 %e A268971 ..2..2..2..2. .1..2..2..2. .2..1..0..0. .2..2..2..2. .1..0..1..2 %e A268971 ..2..2..1..2. .2..1..2..2. .1..0..0..1. .2..2..1..0. .1..2..2..1 %Y A268971 Column 1 is A000244. %Y A268971 Row 1 is A084858. %K A268971 nonn,tabl %O A268971 1,1 %A A268971 _R. H. Hardin_, Feb 16 2016