A268975 Number of 5Xn 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
243, 8448, 114048, 1504656, 18852912, 231730344, 2799406656, 33382885464, 393837138576, 4605236160408, 53449814746368, 616434849399384, 7070720929863408, 80721453100802904, 917737124914636128
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..0..1. .0..2..2. .2..1..2. .0..0..0. .2..1..2. .0..1..2. .0..1..0 ..1..2..1. .1..2..1. .0..1..0. .1..0..0. .0..1..0. .0..1..0. .0..0..1 ..2..2..2. .1..0..0. .0..1..2. .0..0..0. .2..1..2. .0..0..1. .2..2..2 ..1..2..2. .0..0..0. .0..1..2. .1..0..1. .2..2..1. .0..1..0. .1..2..1 ..1..1..2. .0..1..0. .2..1..1. .1..0..2. .1..0..0. .0..0..0. .1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268971.
Formula
Empirical: a(n) = 32*a(n-1) -384*a(n-2) +2200*a(n-3) -6494*a(n-4) +9016*a(n-5) -816*a(n-6) -14888*a(n-7) +18879*a(n-8) -5464*a(n-9) -7472*a(n-10) +8336*a(n-11) -3648*a(n-12) +768*a(n-13) -64*a(n-14) for n>18
Comments