A268990 Number of n X 3 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
7, 35, 174, 849, 4083, 19416, 91491, 427863, 1988142, 9187653, 42256599, 193542240, 883204143, 4017241083, 18219040206, 82410172617, 371879874987, 1674499435176, 7525052043819, 33755742643791, 151168877259918, 675941817039645
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..0. .0..0..1. .0..0..1. .0..0..0. .1..1..0. .0..1..0. .1..0..0 ..0..1..0. .1..0..0. .1..0..0. .0..0..1. .0..0..0. .0..0..1. .1..0..0 ..0..0..0. .0..0..1. .1..0..0. .0..0..0. .0..0..1. .1..0..0. .1..1..0 ..1..0..1. .0..0..1. .0..1..1. .0..1..0. .0..0..1. .0..1..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268995.
Formula
Empirical: a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3) - 9*a(n-4).
Empirical g.f.: x*(7 - 35*x + 41*x^2 - 16*x^3) / (1 - 5*x + 3*x^2)^2. - Colin Barker, Jan 17 2019