A268992 Number of nX5 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
23, 278, 3331, 37987, 421450, 4583103, 49084071, 519385102, 5442503771, 56571775611, 584048456162, 5994862809815, 61225907059807, 622579765715526, 6306473266306611, 63664757730483923, 640753995659371194
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0..1. .0..1..0..0..0. .0..1..0..1..1. .0..1..0..0..0 ..0..1..0..0..1. .0..0..0..0..1. .0..1..0..0..0. .0..0..1..0..0 ..1..0..1..0..0. .1..0..0..0..1. .0..0..1..0..0. .1..0..1..1..0 ..1..0..1..0..1. .0..1..0..0..0. .0..0..1..0..0. .0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268995.
Formula
Empirical: a(n) = 26*a(n-1) -241*a(n-2) +994*a(n-3) -2060*a(n-4) +2218*a(n-5) -1201*a(n-6) +290*a(n-7) -25*a(n-8) for n>9
Comments