A268997 Number of 3 X n binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
8, 41, 174, 805, 3331, 14080, 57287, 232449, 928886, 3688159, 14524152, 56872865, 221485093, 858684462, 3315594029, 12757162785, 48929395140, 187135343189, 713890088738, 2717075148077, 10319450344743, 39117842242220
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1..1. .0..0..0..0. .0..1..0..0. .0..0..0..1. .1..0..1..0 ..0..0..0..0. .0..0..1..0. .0..1..0..1. .1..0..0..1. .1..0..1..0 ..1..0..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A268995.
Formula
Empirical: a(n) = 3*a(n-1) + 12*a(n-2) - 16*a(n-3) - 62*a(n-4) - 34*a(n-5) + 16*a(n-6) + 12*a(n-7) - a(n-8) - a(n-9).
Empirical g.f.: x*(8 + 17*x - 45*x^2 - 81*x^3 - 20*x^4 + 25*x^5 + 9*x^6 - 2*x^7 - x^8) / ((1 + x)*(1 - 2*x - 6*x^2 + x^4)^2). - Colin Barker, Jan 18 2019