A268998 Number of 4Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
16, 126, 849, 6009, 37987, 244397, 1506570, 9258784, 55904997, 335264275, 1991983545, 11763490813, 69051103048, 403375829894, 2346089237885, 13593697842329, 78497992061491, 451930855824889, 2594820580805818
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1. .0..1..0..0. .1..1..0..1. .1..0..0..0. .1..0..0..0 ..0..1..0..0. .1..0..0..1. .0..0..0..0. .1..0..1..1. .0..1..0..0 ..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..0 ..1..1..0..0. .0..1..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268995.
Formula
Empirical: a(n) = 2*a(n-1) +39*a(n-2) +14*a(n-3) -482*a(n-4) -1102*a(n-5) -111*a(n-6) +1758*a(n-7) +982*a(n-8) -1114*a(n-9) -743*a(n-10) +394*a(n-11) +206*a(n-12) -90*a(n-13) -17*a(n-14) +10*a(n-15) -a(n-16)
Comments