A269006 Number of n X 3 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
2, 8, 46, 224, 1066, 4952, 22654, 102416, 458674, 2038328, 8999374, 39512144, 172645498, 751190504, 3256354942, 14069557088, 60610482274, 260412843944, 1116181074286, 4773749750528, 20376053362762, 86813692172216
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0. .1..0..1. .1..0..1. .0..1..1. .1..0..0. .0..1..1. .0..1..0 ..1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..0. .0..0..0. .1..0..0 ..1..0..0. .0..0..0. .0..0..1. .0..0..1. .0..0..0. .0..0..0. .0..0..0 ..0..1..0. .1..1..0. .0..1..0. .0..0..0. .1..0..0. .1..0..1. .1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A269011.
Formula
Empirical: a(n) = 10*a(n-1) - 31*a(n-2) + 24*a(n-3) + 21*a(n-4) - 18*a(n-5) - 9*a(n-6).
Empirical g.f.: 2*x*(1 - x)*(1 - 3*x)*(1 - 2*x + 3*x^2) / (1 - 5*x + 3*x^2 + 3*x^3)^2. - Colin Barker, Jan 18 2019