A269007 Number of n X 4 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
5, 36, 305, 2136, 14240, 91048, 566656, 3456320, 20760192, 123186784, 723791744, 4218132480, 24414483712, 140486492800, 804321836032, 4584741088256, 26032741150720, 147311358346752, 831044097026048, 4675403505475584
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0. .1..0..1..0. .0..0..1..0. .0..1..0..0. .0..0..0..0 ..0..0..0..1. .1..0..0..0. .0..1..0..0. .0..1..0..1. .0..1..0..0 ..0..0..0..1. .0..1..0..1. .0..0..0..0. .1..0..0..0. .0..0..1..0 ..0..1..0..1. .0..0..0..0. .1..0..0..1. .0..0..0..1. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269011.
Formula
Empirical: a(n) = 12*a(n-1) - 40*a(n-2) + 8*a(n-3) + 92*a(n-4) - 32*a(n-5) - 64*a(n-6) for n>7.
Empirical g.f.: x*(5 - 24*x + 73*x^2 - 124*x^3 + 60*x^4 + 16*x^5 + 4*x^6) / (1 - 6*x + 2*x^2 + 8*x^3)^2. - Colin Barker, Jan 18 2019