A269008 Number of n X 5 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
10, 88, 1078, 10976, 109058, 1053432, 10002542, 93733440, 869397882, 7996744280, 73044076454, 663272676512, 5992284643698, 53897945082104, 482908211678430, 4311837258739840, 38381936117267690, 340717648957870424
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..0..0. .0..0..0..0..1. .1..0..0..0..1. .0..0..0..0..1 ..1..0..0..1..0. .0..1..0..1..0. .1..0..0..0..1. .0..1..0..0..1 ..0..0..1..0..0. .0..1..0..0..0. .0..1..0..0..0. .0..0..0..1..0 ..1..0..1..0..1. .0..1..0..0..1. .0..0..0..0..0. .0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269011.
Formula
Empirical: a(n) = 24*a(n-1) -198*a(n-2) +584*a(n-3) +137*a(n-4) -2864*a(n-5) +1132*a(n-6) +4336*a(n-7) -1391*a(n-8) -2280*a(n-9) +90*a(n-10) +200*a(n-11) -25*a(n-12).
Comments