A269010 Number of nX7 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
38, 696, 18210, 390064, 8134304, 164351184, 3258530608, 63679868768, 1230707111424, 23573013881888, 448188039743360, 8468276406290880, 159151109503787520, 2977237536021550208, 55469798154343791232
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..0..1..0..0..1. .1..0..1..0..0..1..0. .1..0..1..0..0..1..0 ..0..1..0..0..0..0..1. .1..0..0..0..0..0..0. .0..0..0..0..1..0..0 ..0..0..0..0..0..1..0. .1..0..1..1..0..0..0. .1..0..1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269011.
Formula
Empirical: a(n) = 60*a(n-1) -1352*a(n-2) +13344*a(n-3) -35948*a(n-4) -311480*a(n-5) +1985472*a(n-6) +1821840*a(n-7) -31021776*a(n-8) +4125984*a(n-9) +251967152*a(n-10) -46853056*a(n-11) -1173410880*a(n-12) -138650624*a(n-13) +2912101888*a(n-14) +1295316992*a(n-15) -3360870400*a(n-16) -2339016704*a(n-17) +1368141824*a(n-18) +1168457728*a(n-19) -291553280*a(n-20) -245170176*a(n-21) +45023232*a(n-22) +19922944*a(n-23) -4194304*a(n-24) for n>25
Comments