cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269011 T(n,k)=Number of nXk binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1, 0, 2, 4, 0, 5, 8, 15, 0, 10, 36, 46, 48, 0, 20, 88, 305, 224, 145, 0, 38, 272, 1078, 2136, 1066, 420, 0, 71, 696, 4948, 10976, 14240, 4952, 1183, 0, 130, 1900, 18210, 73568, 109058, 91048, 22654, 3264, 0, 235, 4856, 73277, 390064, 1049588, 1053432, 566656
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Table starts
.0.....1.......2.........5.........10...........20.............38
.0.....4.......8........36.........88..........272............696
.0....15......46.......305.......1078.........4948..........18210
.0....48.....224......2136......10976........73568.........390064
.0...145....1066.....14240.....109058......1049588........8134304
.0...420....4952.....91048....1053432.....14382480......164351184
.0..1183...22654....566656...10002542....192100836.....3258530608
.0..3264..102416...3456320...93733440...2516546784....63679868768
.0..8865..458674..20760192..869397882..32481770852..1230707111424
.0.23780.2038328.123186784.7996744280.414339126768.23573013881888

Examples

			Some solutions for n=4 k=4
..1..1..0..0. .0..0..1..0. .1..0..1..1. .0..1..0..0. .0..0..0..0
..0..0..0..1. .0..0..1..0. .1..0..0..0. .0..0..1..0. .1..0..0..0
..0..0..0..0. .1..0..0..0. .1..0..0..1. .0..0..1..0. .0..1..0..0
..0..1..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..0..0
		

Crossrefs

Column 2 is A093967.
Row 1 is A001629.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -31*a(n-2) +24*a(n-3) +21*a(n-4) -18*a(n-5) -9*a(n-6)
k=4: a(n) = 12*a(n-1) -40*a(n-2) +8*a(n-3) +92*a(n-4) -32*a(n-5) -64*a(n-6) for n>7
k=5: [order 12]
k=6: [order 14]
k=7: [order 24] for n>25
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 2*a(n-1) +5*a(n-2) -6*a(n-3) -9*a(n-4)
n=3: a(n) = 4*a(n-1) +8*a(n-2) -34*a(n-3) -16*a(n-4) +60*a(n-5) -25*a(n-6)
n=4: [order 8]
n=5: [order 14]
n=6: [order 20]
n=7: [order 32]