A269011 T(n,k)=Number of nXk binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 1, 0, 2, 4, 0, 5, 8, 15, 0, 10, 36, 46, 48, 0, 20, 88, 305, 224, 145, 0, 38, 272, 1078, 2136, 1066, 420, 0, 71, 696, 4948, 10976, 14240, 4952, 1183, 0, 130, 1900, 18210, 73568, 109058, 91048, 22654, 3264, 0, 235, 4856, 73277, 390064, 1049588, 1053432, 566656
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..0..0. .0..0..1..0. .1..0..1..1. .0..1..0..0. .0..0..0..0 ..0..0..0..1. .0..0..1..0. .1..0..0..0. .0..0..1..0. .1..0..0..0 ..0..0..0..0. .1..0..0..0. .1..0..0..1. .0..0..1..0. .0..1..0..0 ..0..1..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..721
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -31*a(n-2) +24*a(n-3) +21*a(n-4) -18*a(n-5) -9*a(n-6)
k=4: a(n) = 12*a(n-1) -40*a(n-2) +8*a(n-3) +92*a(n-4) -32*a(n-5) -64*a(n-6) for n>7
k=5: [order 12]
k=6: [order 14]
k=7: [order 24] for n>25
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 2*a(n-1) +5*a(n-2) -6*a(n-3) -9*a(n-4)
n=3: a(n) = 4*a(n-1) +8*a(n-2) -34*a(n-3) -16*a(n-4) +60*a(n-5) -25*a(n-6)
n=4: [order 8]
n=5: [order 14]
n=6: [order 20]
n=7: [order 32]
Comments