A269012 Number of 2 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 4, 8, 36, 88, 272, 696, 1900, 4856, 12588, 31792, 80288, 200304, 498004, 1229672, 3024948, 7407496, 18079664, 43980072, 106688956, 258132824, 623113020, 1500935776, 3608439104, 8659683552, 20747930788, 49635222728, 118576046148
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1. .1..0..0..1. .0..0..1..1. .1..0..1..0. .0..0..0..0 ..1..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..1. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A269011.
Formula
Empirical: a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) - 9*a(n-4).
Conjectures from Colin Barker, Jan 18 2019: (Start)
G.f.: 4*x^2 / (1 - x - 3*x^2)^2.
a(n) = 4*(-((1/2)*(1+sqrt(13)))^n*(sqrt(13)-13*n) + ((1/2)*(1-sqrt(13)))^n*(sqrt(13)+13*n)) / 169.
(End)