A269015 Number of 5Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 145, 1066, 14240, 109058, 1049588, 8134304, 69184207, 534525058, 4286305792, 32838001316, 255036784680, 1935580387968, 14746081110093, 110945210978202, 834598743197152, 6232287294972630, 46465158121063708, 344786403529703264
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0. .0..0..0..1. .1..0..0..1. .1..0..0..0. .1..0..1..0 ..0..1..0..0. .0..0..0..1. .1..0..0..1. .0..1..0..0. .1..0..1..0 ..0..0..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..1. .1..0..0..1 ..1..1..0..1. .1..0..0..0. .0..1..0..0. .0..0..0..0. .0..0..0..0 ..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269011.
Formula
Empirical: a(n) = 8*a(n-1) +52*a(n-2) -424*a(n-3) -816*a(n-4) +6756*a(n-5) +1362*a(n-6) -38476*a(n-7) +19016*a(n-8) +82920*a(n-9) -70008*a(n-10) -50556*a(n-11) +50607*a(n-12) +9180*a(n-13) -10404*a(n-14)
Comments