cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269017 Number of 7Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

This page as a plain text file.
%I A269017 #4 Feb 17 2016 12:09:16
%S A269017 0,1183,22654,566656,10002542,192100836,3258530608,56916559941,
%T A269017 940858829922,15693717431672,254647316356204,4136953520012344,
%U A269017 66194476183413344,1057401264518371179,16737766253590304358
%N A269017 Number of 7Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
%C A269017 Row 7 of A269011.
%H A269017 R. H. Hardin, <a href="/A269017/b269017.txt">Table of n, a(n) for n = 1..210</a>
%F A269017 Empirical: a(n) = 18*a(n-1) +287*a(n-2) -5714*a(n-3) -26548*a(n-4) +662854*a(n-5) +503265*a(n-6) -36588730*a(n-7) +43719737*a(n-8) +1055812740*a(n-9) -2531478280*a(n-10) -16536573196*a(n-11) +55382641489*a(n-12) +144894098686*a(n-13) -653413097167*a(n-14) -674041638674*a(n-15) +4637903423724*a(n-16) +1002070742726*a(n-17) -20672353979137*a(n-18) +5547728650154*a(n-19) +58313438730423*a(n-20) -34583201988384*a(n-21) -101896578743152*a(n-22) +86334749395584*a(n-23) +103754510061648*a(n-24) -115277187600000*a(n-25) -52616533613760*a(n-26) +83474612042112*a(n-27) +5618980228032*a(n-28) -30037873821696*a(n-29) +4537384086528*a(n-30) +4167543840768*a(n-31) -1173876903936*a(n-32)
%e A269017 Some solutions for n=3
%e A269017 ..0..1..0. .0..0..1. .0..1..0. .1..1..0. .1..1..0. .0..0..0. .1..0..1
%e A269017 ..0..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..0. .0..1..0. .1..0..1
%e A269017 ..0..1..0. .1..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0
%e A269017 ..1..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .1..0..1. .1..0..0
%e A269017 ..0..0..1. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .0..0..1. .0..0..0
%e A269017 ..0..0..1. .1..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..1..0
%e A269017 ..1..0..1. .0..1..0. .1..1..0. .0..0..0. .0..1..0. .1..1..0. .0..0..1
%Y A269017 Cf. A269011.
%K A269017 nonn
%O A269017 1,2
%A A269017 _R. H. Hardin_, Feb 17 2016