This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269017 #4 Feb 17 2016 12:09:16 %S A269017 0,1183,22654,566656,10002542,192100836,3258530608,56916559941, %T A269017 940858829922,15693717431672,254647316356204,4136953520012344, %U A269017 66194476183413344,1057401264518371179,16737766253590304358 %N A269017 Number of 7Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once. %C A269017 Row 7 of A269011. %H A269017 R. H. Hardin, <a href="/A269017/b269017.txt">Table of n, a(n) for n = 1..210</a> %F A269017 Empirical: a(n) = 18*a(n-1) +287*a(n-2) -5714*a(n-3) -26548*a(n-4) +662854*a(n-5) +503265*a(n-6) -36588730*a(n-7) +43719737*a(n-8) +1055812740*a(n-9) -2531478280*a(n-10) -16536573196*a(n-11) +55382641489*a(n-12) +144894098686*a(n-13) -653413097167*a(n-14) -674041638674*a(n-15) +4637903423724*a(n-16) +1002070742726*a(n-17) -20672353979137*a(n-18) +5547728650154*a(n-19) +58313438730423*a(n-20) -34583201988384*a(n-21) -101896578743152*a(n-22) +86334749395584*a(n-23) +103754510061648*a(n-24) -115277187600000*a(n-25) -52616533613760*a(n-26) +83474612042112*a(n-27) +5618980228032*a(n-28) -30037873821696*a(n-29) +4537384086528*a(n-30) +4167543840768*a(n-31) -1173876903936*a(n-32) %e A269017 Some solutions for n=3 %e A269017 ..0..1..0. .0..0..1. .0..1..0. .1..1..0. .1..1..0. .0..0..0. .1..0..1 %e A269017 ..0..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..0. .0..1..0. .1..0..1 %e A269017 ..0..1..0. .1..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0 %e A269017 ..1..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .1..0..1. .1..0..0 %e A269017 ..0..0..1. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .0..0..1. .0..0..0 %e A269017 ..0..0..1. .1..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..1..0 %e A269017 ..1..0..1. .0..1..0. .1..1..0. .0..0..0. .0..1..0. .1..1..0. .0..0..1 %Y A269017 Cf. A269011. %K A269017 nonn %O A269017 1,2 %A A269017 _R. H. Hardin_, Feb 17 2016