A269030 Number of n X 3 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
12, 48, 348, 2136, 12228, 67104, 357756, 1867560, 9593844, 48665904, 244357740, 1216672824, 6015296484, 29561944128, 144531868764, 703461546312, 3410368965588, 16475694411600, 79347347565132, 381071870841432
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..2..2. .2..2..2. .1..0..2. .0..0..0. .2..2..1. .0..1..0. .2..1..0 ..2..2..2. .2..1..2. .1..2..1. .0..0..0. .1..2..2. .1..0..0. .0..1..2 ..2..1..0. .2..2..2. .2..2..1. .0..1..0. .2..2..1. .0..0..0. .0..1..0 ..2..1..0. .2..1..0. .2..2..1. .2..0..0. .2..1..2. .0..0..0. .0..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A269035.
Formula
Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>5.
Empirical g.f.: 12*x*(1 - 6*x + 18*x^2 - 16*x^3 + 4*x^4) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Jan 18 2019