A269034 Number of nX7 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
576, 6912, 198816, 4998648, 119790816, 2783857776, 63310818360, 1416701634552, 31304407671636, 684763778434512, 14854833017622684, 320017408314705960, 6853471478780510820, 146027732878366085832, 3097663460112852295020
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0..1..2..1..0. .1..2..2..1..2..1..0. .0..1..2..1..2..2..2 ..0..0..0..1..0..1..2. .2..1..2..1..2..1..0. .0..1..2..1..2..1..2 ..1..1..0..1..0..1..2. .0..1..2..1..0..1..2. .0..1..0..2..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269035.
Formula
Empirical: a(n) = 82*a(n-1) -2779*a(n-2) +50254*a(n-3) -514677*a(n-4) +2743554*a(n-5) -2950648*a(n-6) -48609034*a(n-7) +245316224*a(n-8) -89432156*a(n-9) -2444502643*a(n-10) +5704858072*a(n-11) +7254972423*a(n-12) -41716035658*a(n-13) +18035762825*a(n-14) +132606292618*a(n-15) -178302990168*a(n-16) -171928095488*a(n-17) +491624257303*a(n-18) -70904009836*a(n-19) -621985038704*a(n-20) +477824279660*a(n-21) +281672875548*a(n-22) -522707244404*a(n-23) +119050620101*a(n-24) +190519380818*a(n-25) -140300285301*a(n-26) +10246766686*a(n-27) +24709126330*a(n-28) -9478840252*a(n-29) -368991021*a(n-30) +964165580*a(n-31) -172681320*a(n-32) -20355920*a(n-33) +9906636*a(n-34) -719568*a(n-35) -120720*a(n-36) +22272*a(n-37) -1024*a(n-38) for n>39
Comments