cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A269029 Number of n X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 24, 348, 18384, 1326576, 208867428, 63310818360, 40013955378312, 51911512873697772, 140039775591497709312, 791864652110724378938904, 9334169232033820587188999592, 232675011644185023762453520339476
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Diagonal of A269035.

Examples

			Some solutions for n=4
..2..2..2..2. .2..1..0..0. .2..1..0..2. .2..1..2..2. .0..1..2..1
..2..2..2..1. .0..0..0..0. .0..1..2..1. .0..1..2..1. .2..1..0..2
..1..2..2..1. .0..0..0..0. .2..1..0..1. .0..1..2..1. .0..1..2..1
..2..1..2..1. .1..0..0..0. .2..1..2..1. .2..2..2..2. .0..1..2..2
		

Crossrefs

Cf. A269035.

A269030 Number of n X 3 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

12, 48, 348, 2136, 12228, 67104, 357756, 1867560, 9593844, 48665904, 244357740, 1216672824, 6015296484, 29561944128, 144531868764, 703461546312, 3410368965588, 16475694411600, 79347347565132, 381071870841432
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..1..2..2. .2..2..2. .1..0..2. .0..0..0. .2..2..1. .0..1..0. .2..1..0
..2..2..2. .2..1..2. .1..2..1. .0..0..0. .1..2..2. .1..0..0. .0..1..2
..2..1..0. .2..2..2. .2..2..1. .0..1..0. .2..2..1. .0..0..0. .0..1..0
..2..1..0. .2..1..0. .2..2..1. .2..0..0. .2..1..2. .0..0..0. .0..0..2
		

Crossrefs

Column 3 of A269035.

Formula

Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>5.
Empirical g.f.: 12*x*(1 - 6*x + 18*x^2 - 16*x^3 + 4*x^4) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Jan 18 2019

A269031 Number of n X 4 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

36, 216, 2166, 18384, 146064, 1114848, 8277072, 60218112, 431354928, 3052215072, 21383561232, 148585984320, 1025363155440, 7034327057760, 48013557090768, 326276117933952, 2208609401649072, 14899002865010592, 100198549907000208
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..0..1. .1..0..0..1. .0..1..2..1. .2..1..0..0. .2..2..1..2
..0..1..0..1. .1..0..0..0. .2..1..0..1. .2..1..0..1. .2..2..2..1
..2..1..2..2. .0..0..1..0. .0..1..0..1. .2..1..0..1. .2..1..2..2
..2..1..2..2. .0..1..0..0. .2..1..2..0. .2..1..2..2. .2..1..2..2
		

Crossrefs

Column 4 of A269035.

Formula

Empirical: a(n) = 14*a(n-1) - 57*a(n-2) + 56*a(n-3) - 16*a(n-4) for n>5.
Empirical g.f.: 6*x*(6 - 48*x + 199*x^2 - 274*x^3 + 105*x^4) / (1 - 7*x + 4*x^2)^2. - Colin Barker, Jan 18 2019

A269032 Number of nX5 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

96, 672, 9528, 115656, 1326576, 14710368, 159397596, 1698064656, 17853542544, 185754411168, 1916112393912, 19623814814640, 199755193119372, 2022721445384448, 20388967766219208, 204700225563136152
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Column 5 of A269035.

Examples

			Some solutions for n=4
..2..0..1..0..0. .0..1..2..1..0. .0..0..0..0..1. .2..1..2..2..1
..1..2..1..0..1. .2..1..2..1..2. .1..0..0..0..0. .2..1..2..1..2
..1..0..1..2..1. .2..1..2..1..0. .0..0..0..0..1. .0..1..2..2..2
..0..0..1..2..2. .0..2..2..1..2. .0..0..0..1..0. .0..1..2..2..2
		

Crossrefs

Cf. A269035.

Formula

Empirical: a(n) = 28*a(n-1) -286*a(n-2) +1290*a(n-3) -2373*a(n-4) +304*a(n-5) +3551*a(n-6) -2846*a(n-7) -546*a(n-8) +1308*a(n-9) -505*a(n-10) +76*a(n-11) -4*a(n-12) for n>13

A269033 Number of nX6 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

240, 2208, 44760, 785124, 13031664, 208867428, 3266423688, 50155587360, 759280601376, 11364951702132, 168545724611088, 2480433137331636, 36267257458624740, 527333427504496308, 7630684978884541020
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Column 6 of A269035.

Examples

			Some solutions for n=3
..1..2..2..2..1..0. .1..2..1..0..0..1. .0..1..0..0..1..0. .1..2..2..1..2..2
..1..2..1..0..1..0. .2..2..1..0..1..0. .0..0..1..0..1..0. .2..2..2..1..2..2
..1..2..1..2..1..0. .1..2..1..0..1..0. .1..0..1..2..1..2. .2..1..2..2..1..2
		

Crossrefs

Cf. A269035.

Formula

Empirical: a(n) = 36*a(n-1) -436*a(n-2) +1854*a(n-3) +340*a(n-4) -19128*a(n-5) +23849*a(n-6) +56184*a(n-7) -108224*a(n-8) -40816*a(n-9) +160400*a(n-10) -34136*a(n-11) -83203*a(n-12) +42628*a(n-13) +6468*a(n-14) -6334*a(n-15) +204*a(n-16) +240*a(n-17) -25*a(n-18) for n>19

A269034 Number of nX7 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

576, 6912, 198816, 4998648, 119790816, 2783857776, 63310818360, 1416701634552, 31304407671636, 684763778434512, 14854833017622684, 320017408314705960, 6853471478780510820, 146027732878366085832, 3097663460112852295020
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Column 7 of A269035.

Examples

			Some solutions for n=3
..0..0..0..1..2..1..0. .1..2..2..1..2..1..0. .0..1..2..1..2..2..2
..0..0..0..1..0..1..2. .2..1..2..1..2..1..0. .0..1..2..1..2..1..2
..1..1..0..1..0..1..2. .0..1..2..1..0..1..2. .0..1..0..2..2..1..2
		

Crossrefs

Cf. A269035.

Formula

Empirical: a(n) = 82*a(n-1) -2779*a(n-2) +50254*a(n-3) -514677*a(n-4) +2743554*a(n-5) -2950648*a(n-6) -48609034*a(n-7) +245316224*a(n-8) -89432156*a(n-9) -2444502643*a(n-10) +5704858072*a(n-11) +7254972423*a(n-12) -41716035658*a(n-13) +18035762825*a(n-14) +132606292618*a(n-15) -178302990168*a(n-16) -171928095488*a(n-17) +491624257303*a(n-18) -70904009836*a(n-19) -621985038704*a(n-20) +477824279660*a(n-21) +281672875548*a(n-22) -522707244404*a(n-23) +119050620101*a(n-24) +190519380818*a(n-25) -140300285301*a(n-26) +10246766686*a(n-27) +24709126330*a(n-28) -9478840252*a(n-29) -368991021*a(n-30) +964165580*a(n-31) -172681320*a(n-32) -20355920*a(n-33) +9906636*a(n-34) -719568*a(n-35) -120720*a(n-36) +22272*a(n-37) -1024*a(n-38) for n>39

A269036 Number of 2 X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 24, 48, 216, 672, 2208, 6912, 21408, 65280, 196992, 589056, 1748352, 5156352, 15124992, 44156928, 128383488, 371908608, 1073879040, 3091820544, 8878479360, 25435250688, 72710922240, 207448571904, 590798364672, 1679765078016
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..2..1..0..0. .2..2..2..1. .0..2..2..2. .2..2..1..2. .0..1..0..1
..2..1..2..1. .2..2..1..2. .2..1..2..1. .1..2..2..1. .2..0..0..1
		

Crossrefs

Row 2 of A269035.

Formula

Empirical: a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4).
Empirical g.f.: 24*x^2*(1 - x)^2 / (1 - 2*x - 2*x^2)^2. - Colin Barker, Jan 18 2019

A269037 Number of 3 X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 120, 348, 2166, 9528, 44760, 198816, 877800, 3809856, 16379232, 69769920, 295055136, 1239952512, 5183031744, 21564442752, 89355535680, 368925874944, 1518322209600, 6230763310464, 25503209969088, 104143201935360
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1..0. .0..1..0..2. .0..1..0..1. .2..2..1..2. .1..2..2..2
..1..0..0..1. .0..1..2..1. .2..1..2..1. .2..1..2..2. .2..2..2..1
..0..0..0..1. .2..1..2..2. .1..2..2..1. .2..2..2..2. .2..2..1..2
		

Crossrefs

Row 3 of A269035.

Formula

Empirical: a(n) = 6*a(n-1) - a(n-2) - 28*a(n-3) - 4*a(n-4) + 16*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: 6*x^2*(20 - 62*x + 33*x^2 + 40*x^3 - 3*x^4 - 16*x^5 + 4*x^6) / (1 - 3*x - 4*x^2 + 2*x^3)^2. - Colin Barker, Jan 18 2019

A269038 Number of 4Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 504, 2136, 18384, 115656, 785124, 4998648, 31834476, 198736752, 1231177296, 7552688064, 46020487500, 278641166280, 1678349335044, 10062618187272, 60089435895360, 357550261665528, 2120806295463156, 12543856834626072
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Row 4 of A269035.

Examples

			Some solutions for n=4
..0..1..0..1. .2..2..2..1. .2..2..2..2. .1..0..0..2. .2..2..1..2
..2..1..2..1. .2..2..2..2. .1..2..2..1. .1..0..1..0. .2..2..2..2
..0..1..0..1. .2..1..2..1. .1..2..1..2. .0..0..1..0. .2..2..2..2
..0..0..2..1. .0..2..2..1. .1..2..1..2. .1..0..1..0. .2..2..1..1
		

Crossrefs

Cf. A269035.

Formula

Empirical: a(n) = 6*a(n-1) +23*a(n-2) -102*a(n-3) -288*a(n-4) +250*a(n-5) +787*a(n-6) -238*a(n-7) -741*a(n-8) +124*a(n-9) +196*a(n-10) -16*a(n-11) -16*a(n-12) for n>14

A269039 Number of 5Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1944, 12228, 146064, 1326576, 13031664, 119790816, 1105914780, 9987532176, 89650751964, 796324353216, 7029528437100, 61650349082232, 537978900955440, 4672818187679448, 40427882184540648, 348530963947264848
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Row 5 of A269035.

Examples

			Some solutions for n=4
..0..1..2..1. .0..0..0..1. .0..0..0..1. .2..1..0..0. .2..1..2..1
..2..1..2..1. .1..1..0..1. .0..0..0..0. .2..1..0..0. .0..1..0..1
..0..1..2..1. .0..0..0..1. .0..0..0..1. .2..1..0..1. .0..0..0..0
..2..1..2..2. .0..1..0..1. .0..0..0..1. .0..1..2..2. .1..0..1..2
..2..1..0..1. .0..1..2..1. .1..0..1..0. .2..1..2..1. .1..2..1..2
		

Crossrefs

Cf. A269035.

Formula

Empirical: a(n) = 12*a(n-1) +26*a(n-2) -566*a(n-3) -123*a(n-4) +8804*a(n-5) -4121*a(n-6) -59620*a(n-7) +55115*a(n-8) +183692*a(n-9) -256127*a(n-10) -211910*a(n-11) +498819*a(n-12) -48036*a(n-13) -371692*a(n-14) +214008*a(n-15) +43848*a(n-16) -64656*a(n-17) +8640*a(n-18) +5184*a(n-19) -1296*a(n-20) for n>22
Showing 1-10 of 12 results. Next