A269037 Number of 3 X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 120, 348, 2166, 9528, 44760, 198816, 877800, 3809856, 16379232, 69769920, 295055136, 1239952512, 5183031744, 21564442752, 89355535680, 368925874944, 1518322209600, 6230763310464, 25503209969088, 104143201935360
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0. .0..1..0..2. .0..1..0..1. .2..2..1..2. .1..2..2..2 ..1..0..0..1. .0..1..2..1. .2..1..2..1. .2..1..2..2. .2..2..2..1 ..0..0..0..1. .2..1..2..2. .1..2..2..1. .2..2..2..2. .2..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A269035.
Formula
Empirical: a(n) = 6*a(n-1) - a(n-2) - 28*a(n-3) - 4*a(n-4) + 16*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: 6*x^2*(20 - 62*x + 33*x^2 + 40*x^3 - 3*x^4 - 16*x^5 + 4*x^6) / (1 - 3*x - 4*x^2 + 2*x^3)^2. - Colin Barker, Jan 18 2019