A269039 Number of 5Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 1944, 12228, 146064, 1326576, 13031664, 119790816, 1105914780, 9987532176, 89650751964, 796324353216, 7029528437100, 61650349082232, 537978900955440, 4672818187679448, 40427882184540648, 348530963947264848
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..2..1. .0..0..0..1. .0..0..0..1. .2..1..0..0. .2..1..2..1 ..2..1..2..1. .1..1..0..1. .0..0..0..0. .2..1..0..0. .0..1..0..1 ..0..1..2..1. .0..0..0..1. .0..0..0..1. .2..1..0..1. .0..0..0..0 ..2..1..2..2. .0..1..0..1. .0..0..0..1. .0..1..2..2. .1..0..1..2 ..2..1..0..1. .0..1..2..1. .1..0..1..0. .2..1..2..1. .1..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269035.
Formula
Empirical: a(n) = 12*a(n-1) +26*a(n-2) -566*a(n-3) -123*a(n-4) +8804*a(n-5) -4121*a(n-6) -59620*a(n-7) +55115*a(n-8) +183692*a(n-9) -256127*a(n-10) -211910*a(n-11) +498819*a(n-12) -48036*a(n-13) -371692*a(n-14) +214008*a(n-15) +43848*a(n-16) -64656*a(n-17) +8640*a(n-18) +5184*a(n-19) -1296*a(n-20) for n>22
Comments