cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269043 a(n) is the number of distinct values that can be expressed as prime(n+k) + prime(n-k) in at least 2 different ways.

This page as a plain text file.
%I A269043 #22 Sep 12 2017 09:59:45
%S A269043 0,0,0,1,1,1,1,2,3,3,2,2,3,1,4,4,2,4,4,4,3,5,5,7,9,8,7,8,7,6,7,9,7,9,
%T A269043 8,11,8,8,7,10,9,11,12,9,9,14,11,12,11,15,15,12,14,12,12,17,11,14,15,
%U A269043 15,14,15,18,16,13,18,12,16,14,16,14,12,19,17,13,19
%N A269043 a(n) is the number of distinct values that can be expressed as prime(n+k) + prime(n-k) in at least 2 different ways.
%C A269043 Conjecture: a(n) > 0 for n > 3.
%H A269043 Michel Lagneau, <a href="/A269043/b269043.txt">Table of n, a(n) for n = 1..1000</a>
%e A269043 a(13) = 3 because:
%e A269043 p(13 + 1)  + p(13 - 1)  = 43 + 37 = 80;
%e A269043 p(13 + 2)  + p(13 - 2)  = 47 + 31 = 78;
%e A269043 p(13 + 3)  + p(13 - 3)  = 53 + 29 = 82;
%e A269043 p(13 + 4)  + p(13 - 4)  = 59 + 23 = 82;
%e A269043 p(13 + 5)  + p(13 - 5)  = 61 + 19 = 80;
%e A269043 p(13 + 6)  + p(13 - 6)  = 67 + 17 = 84;
%e A269043 p(13 + 7)  + p(13 - 7)  = 71 + 13 = 84;
%e A269043 p(13 + 8)  + p(13 - 8)  = 73 + 11 = 84.
%e A269043 p(13 + 9)  + p(13 - 9)  = 79 + 7  = 86;
%e A269043 p(13 + 10) + p(13 - 10) = 83 + 5  = 88;
%e A269043 p(13 + 11) + p(13 - 11) = 89 + 3  = 92;
%e A269043 p(13 + 12) + p(13 - 12) = 97 + 2  = 99.
%e A269043 The 3 distinct values of prime(n+k) + prime(n-k) that are each obtained in at least 2 ways are 80, 82 and 84.
%p A269043 for n from 1 to 100 do:
%p A269043   lst:={}:W:=array(1..n-1):cr:=0:
%p A269043     for m from n-1 by -1 to 1 do:
%p A269043       q:=ithprime(n-m)+ithprime(n+m):lst:=lst union {q}:W[m]:=q:
%p A269043     od:
%p A269043       n0:=nops(lst):c:=0:U:=array(1..n0):
%p A269043         for i from 1 to n0 do:
%p A269043          c1:=0:
%p A269043          for j from 1 to n-1 do:
%p A269043           if lst[i]=W[j] then c:=c+1:c1:=c1+1:
%p A269043           else fi:
%p A269043          od:
%p A269043         U[i]:=c1:cr:=cr+1:
%p A269043        od:
%p A269043        ct:=0:
%p A269043        for l from 1 to cr do:
%p A269043        if U[l]>1 then ct:=ct+1:
%p A269043        else fi:
%p A269043        od:
%p A269043        printf(`%d, `,ct):
%p A269043 od:
%o A269043 (PARI) a(n) = {v = []; for (k=1, n-1, v = concat(v, prime(n+k) + prime(n-k));); vd = vecsort(v,,8); sum(k=1, #vd, #select(x->x==vd[k], v)>1);} \\ _Michel Marcus_, Mar 13 2016
%Y A269043 Cf. A006562, A055380, A055382.
%K A269043 nonn
%O A269043 1,8
%A A269043 _Michel Lagneau_, Feb 18 2016