This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269043 #22 Sep 12 2017 09:59:45 %S A269043 0,0,0,1,1,1,1,2,3,3,2,2,3,1,4,4,2,4,4,4,3,5,5,7,9,8,7,8,7,6,7,9,7,9, %T A269043 8,11,8,8,7,10,9,11,12,9,9,14,11,12,11,15,15,12,14,12,12,17,11,14,15, %U A269043 15,14,15,18,16,13,18,12,16,14,16,14,12,19,17,13,19 %N A269043 a(n) is the number of distinct values that can be expressed as prime(n+k) + prime(n-k) in at least 2 different ways. %C A269043 Conjecture: a(n) > 0 for n > 3. %H A269043 Michel Lagneau, <a href="/A269043/b269043.txt">Table of n, a(n) for n = 1..1000</a> %e A269043 a(13) = 3 because: %e A269043 p(13 + 1) + p(13 - 1) = 43 + 37 = 80; %e A269043 p(13 + 2) + p(13 - 2) = 47 + 31 = 78; %e A269043 p(13 + 3) + p(13 - 3) = 53 + 29 = 82; %e A269043 p(13 + 4) + p(13 - 4) = 59 + 23 = 82; %e A269043 p(13 + 5) + p(13 - 5) = 61 + 19 = 80; %e A269043 p(13 + 6) + p(13 - 6) = 67 + 17 = 84; %e A269043 p(13 + 7) + p(13 - 7) = 71 + 13 = 84; %e A269043 p(13 + 8) + p(13 - 8) = 73 + 11 = 84. %e A269043 p(13 + 9) + p(13 - 9) = 79 + 7 = 86; %e A269043 p(13 + 10) + p(13 - 10) = 83 + 5 = 88; %e A269043 p(13 + 11) + p(13 - 11) = 89 + 3 = 92; %e A269043 p(13 + 12) + p(13 - 12) = 97 + 2 = 99. %e A269043 The 3 distinct values of prime(n+k) + prime(n-k) that are each obtained in at least 2 ways are 80, 82 and 84. %p A269043 for n from 1 to 100 do: %p A269043 lst:={}:W:=array(1..n-1):cr:=0: %p A269043 for m from n-1 by -1 to 1 do: %p A269043 q:=ithprime(n-m)+ithprime(n+m):lst:=lst union {q}:W[m]:=q: %p A269043 od: %p A269043 n0:=nops(lst):c:=0:U:=array(1..n0): %p A269043 for i from 1 to n0 do: %p A269043 c1:=0: %p A269043 for j from 1 to n-1 do: %p A269043 if lst[i]=W[j] then c:=c+1:c1:=c1+1: %p A269043 else fi: %p A269043 od: %p A269043 U[i]:=c1:cr:=cr+1: %p A269043 od: %p A269043 ct:=0: %p A269043 for l from 1 to cr do: %p A269043 if U[l]>1 then ct:=ct+1: %p A269043 else fi: %p A269043 od: %p A269043 printf(`%d, `,ct): %p A269043 od: %o A269043 (PARI) a(n) = {v = []; for (k=1, n-1, v = concat(v, prime(n+k) + prime(n-k));); vd = vecsort(v,,8); sum(k=1, #vd, #select(x->x==vd[k], v)>1);} \\ _Michel Marcus_, Mar 13 2016 %Y A269043 Cf. A006562, A055380, A055382. %K A269043 nonn %O A269043 1,8 %A A269043 _Michel Lagneau_, Feb 18 2016