A269047 Number of n X 3 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
24, 102, 594, 3258, 17346, 90450, 464250, 2353338, 11809746, 58773858, 290465706, 1426996746, 6974700162, 33938314674, 164494914138, 794524032090, 3825755303730, 18370501130754, 87990608484618, 420498562000554
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..1..2. .1..2..0. .1..2..2. .1..2..2. .2..1..0. .0..0..0. .0..0..0 ..2..1..2. .1..0..1. .1..0..1. .1..2..2. .0..1..2. .0..1..0. .0..0..0 ..2..1..0. .0..0..0. .0..0..1. .1..2..1. .2..1..2. .0..1..2. .1..0..1 ..2..2..2. .0..0..0. .1..0..0. .0..0..1. .2..2..0. .2..1..2. .1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A269052.
Formula
Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>5.
Empirical g.f.: 6*x*(1 - x)*(1 - 2*x)*(4 - 11*x + 4*x^2) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Jan 18 2019