A269051 Number of nX7 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
768, 9864, 253416, 6053094, 140497512, 3193266318, 71430596250, 1577976495486, 34509932303172, 748499855355192, 16122334931683590, 345226129034011068, 7354858033380328494, 156000244649213353110, 3296017711974478218258
Offset: 1
Keywords
Examples
Some solutions for n=2 ..1..0..1..0..1..0..1. .2..2..1..2..2..2..2. .0..1..2..2..2..2..1 ..0..0..0..0..1..2..0. .1..2..1..2..1..2..2. .2..1..2..2..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269052.
Formula
Empirical: a(n) = 82*a(n-1) -2779*a(n-2) +50254*a(n-3) -514677*a(n-4) +2743554*a(n-5) -2950648*a(n-6) -48609034*a(n-7) +245316224*a(n-8) -89432156*a(n-9) -2444502643*a(n-10) +5704858072*a(n-11) +7254972423*a(n-12) -41716035658*a(n-13) +18035762825*a(n-14) +132606292618*a(n-15) -178302990168*a(n-16) -171928095488*a(n-17) +491624257303*a(n-18) -70904009836*a(n-19) -621985038704*a(n-20) +477824279660*a(n-21) +281672875548*a(n-22) -522707244404*a(n-23) +119050620101*a(n-24) +190519380818*a(n-25) -140300285301*a(n-26) +10246766686*a(n-27) +24709126330*a(n-28) -9478840252*a(n-29) -368991021*a(n-30) +964165580*a(n-31) -172681320*a(n-32) -20355920*a(n-33) +9906636*a(n-34) -719568*a(n-35) -120720*a(n-36) +22272*a(n-37) -1024*a(n-38) for n>39
Comments