cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A269046 Number of n X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

3, 42, 594, 24192, 1643376, 242861616, 71430596250, 43961616939276, 56121206116838532, 149312689805356303800, 836315757545942679945480, 9777884421682321788379713444, 242268002268280142077867206348378
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Diagonal of A269052.

Examples

			Some solutions for n=4
..2..0..1..2. .1..2..1..2. .0..2..1..0. .2..2..2..2. .0..2..1..2
..1..2..1..0. .1..2..1..0. .1..0..1..0. .1..1..2..2. .1..0..1..2
..1..2..1..0. .1..0..1..0. .0..0..0..0. .2..2..2..1. .0..0..1..0
..1..0..1..0. .1..2..0..0. .0..0..0..1. .1..2..2..2. .0..0..1..0
		

Crossrefs

Cf. A269052.

A269047 Number of n X 3 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

24, 102, 594, 3258, 17346, 90450, 464250, 2353338, 11809746, 58773858, 290465706, 1426996746, 6974700162, 33938314674, 164494914138, 794524032090, 3825755303730, 18370501130754, 87990608484618, 420498562000554
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..2..1..2. .1..2..0. .1..2..2. .1..2..2. .2..1..0. .0..0..0. .0..0..0
..2..1..2. .1..0..1. .1..0..1. .1..2..2. .0..1..2. .0..1..0. .0..0..0
..2..1..0. .0..0..0. .0..0..1. .1..2..1. .2..1..2. .0..1..2. .1..0..1
..2..2..2. .0..0..0. .1..0..0. .0..0..1. .2..2..0. .2..1..2. .1..2..2
		

Crossrefs

Column 3 of A269052.

Formula

Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>5.
Empirical g.f.: 6*x*(1 - x)*(1 - 2*x)*(4 - 11*x + 4*x^2) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Jan 18 2019

A269048 Number of n X 4 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

60, 360, 3078, 24192, 183072, 1350672, 9779808, 69793968, 492374976, 3441051984, 23861339424, 164375084016, 1125975740544, 7675458754704, 52099028628960, 352309891913520, 2374503933353280, 15956129491021776, 106934858162261664
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2..0. .2..1..2..1. .1..2..1..2. .0..0..0..1. .2..1..1..2
..0..1..0..1. .2..1..0..1. .1..2..1..2. .0..0..0..0. .2..2..2..2
..0..0..0..0. .2..1..2..0. .2..2..2..2. .0..0..0..1. .2..2..2..1
..0..1..0..0. .2..1..0..1. .1..1..2..1. .1..0..0..0. .2..1..2..1
		

Crossrefs

Column 4 of A269052.

Formula

Empirical: a(n) = 14*a(n-1) - 57*a(n-2) + 56*a(n-3) - 16*a(n-4) for n>5.
Empirical g.f.: 6*x*(10 - 80*x + 243*x^2 - 290*x^3 + 105*x^4) / (1 - 7*x + 4*x^2)^2. - Colin Barker, Jan 18 2019

A269049 Number of nX5 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

144, 1068, 13140, 149358, 1643376, 17696520, 187575858, 1964080920, 20365312416, 209472681102, 2140087086852, 21738862087680, 219728193571542, 2211332610944712, 22170082238167692, 221519854346189046
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Column 5 of A269052.

Examples

			Some solutions for n=4
..0..1..2..2..0. .2..1..2..1..2. .0..1..2..1..2. .1..2..1..0..0
..0..1..2..1..2. .2..1..2..1..2. .0..0..0..1..0. .2..2..1..0..1
..0..1..0..1..0. .0..1..0..1..0. .0..0..0..1..0. .1..0..1..0..1
..0..1..0..1..0. .2..0..0..0..0. .0..0..0..1..2. .1..0..1..2..1
		

Crossrefs

Cf. A269052.

Formula

Empirical: a(n) = 28*a(n-1) -286*a(n-2) +1290*a(n-3) -2373*a(n-4) +304*a(n-5) +3551*a(n-6) -2846*a(n-7) -546*a(n-8) +1308*a(n-9) -505*a(n-10) +76*a(n-11) -4*a(n-12) for n>13

A269050 Number of n X 6 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

336, 3288, 58752, 971844, 15547380, 242861616, 3726221592, 56376679620, 843461153880, 12504078167988, 183960496250712, 2689028139554232, 39089999874219540, 565531265339620620, 8147584788387401052
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Column 6 of A269052.

Examples

			Some solutions for n=3
..0..0..0..1..0..1. .1..2..1..2..1..0. .2..2..1..0..1..0. .1..0..0..0..0..1
..0..1..0..1..2..1. .2..2..1..2..1..0. .1..2..1..2..1..2. .0..0..1..0..1..0
..0..1..0..1..2..2. .1..2..2..0..1..2. .2..2..1..0..1..2. .1..0..1..0..1..2
		

Crossrefs

Cf. A269052.

Formula

Empirical: a(n) = 36*a(n-1) -436*a(n-2) +1854*a(n-3) +340*a(n-4) -19128*a(n-5) +23849*a(n-6) +56184*a(n-7) -108224*a(n-8) -40816*a(n-9) +160400*a(n-10) -34136*a(n-11) -83203*a(n-12) +42628*a(n-13) +6468*a(n-14) -6334*a(n-15) +204*a(n-16) +240*a(n-17) -25*a(n-18) for n>19.

A269051 Number of nX7 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

768, 9864, 253416, 6053094, 140497512, 3193266318, 71430596250, 1577976495486, 34509932303172, 748499855355192, 16122334931683590, 345226129034011068, 7354858033380328494, 156000244649213353110, 3296017711974478218258
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Column 7 of A269052.

Examples

			Some solutions for n=2
..1..0..1..0..1..0..1. .2..2..1..2..2..2..2. .0..1..2..2..2..2..1
..0..0..0..0..1..2..0. .1..2..1..2..1..2..2. .2..1..2..2..1..2..2
		

Crossrefs

Cf. A269052.

Formula

Empirical: a(n) = 82*a(n-1) -2779*a(n-2) +50254*a(n-3) -514677*a(n-4) +2743554*a(n-5) -2950648*a(n-6) -48609034*a(n-7) +245316224*a(n-8) -89432156*a(n-9) -2444502643*a(n-10) +5704858072*a(n-11) +7254972423*a(n-12) -41716035658*a(n-13) +18035762825*a(n-14) +132606292618*a(n-15) -178302990168*a(n-16) -171928095488*a(n-17) +491624257303*a(n-18) -70904009836*a(n-19) -621985038704*a(n-20) +477824279660*a(n-21) +281672875548*a(n-22) -522707244404*a(n-23) +119050620101*a(n-24) +190519380818*a(n-25) -140300285301*a(n-26) +10246766686*a(n-27) +24709126330*a(n-28) -9478840252*a(n-29) -368991021*a(n-30) +964165580*a(n-31) -172681320*a(n-32) -20355920*a(n-33) +9906636*a(n-34) -719568*a(n-35) -120720*a(n-36) +22272*a(n-37) -1024*a(n-38) for n>39

A269053 Number of 2 X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

9, 42, 102, 360, 1068, 3288, 9864, 29472, 87312, 257184, 753504, 2197632, 6383808, 18478464, 53318784, 153414144, 440293632, 1260710400, 3602253312, 10273007616, 29245172736, 83119822848, 235886217216, 668491456512, 1892026552320
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..1..2..2..2. .2..1..2..1. .0..1..2..1. .1..0..0..1. .1..0..0..1
..2..2..2..1. .2..1..0..0. .0..1..2..1. .0..1..0..0. .0..0..1..0
		

Crossrefs

Row 2 of A269052.

Formula

Empirical: a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4).
Empirical g.f.: 3*x*(3 + 2*x - 22*x^2 + 8*x^3) / (1 - 2*x - 2*x^2)^2. - Colin Barker, Jan 18 2019

A269054 Number of 3 X n 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

27, 174, 594, 3078, 13140, 58752, 253416, 1090344, 4637904, 19604352, 82332384, 343986912, 1430547456, 5925418752, 24456120000, 100618925568, 412797979584, 1689208728576, 6896384506176, 28095875422848, 114241910041536
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Examples

			Some solutions for n=4:
..2..2..1..1. .0..1..2..2. .0..1..0..1. .2..2..1..2. .1..1..2..1
..2..2..2..2. .0..1..0..1. .0..0..0..1. .2..2..1..2. .2..2..2..2
..1..2..1..2. .2..1..2..1. .1..1..0..0. .2..2..2..1. .1..2..1..2
		

Crossrefs

Row 3 of A269052.

Formula

Empirical: a(n) = 6*a(n-1) - a(n-2) - 28*a(n-3) - 4*a(n-4) + 16*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: 3*x*(9 + 4*x - 141*x^2 + 148*x^3 + 82*x^4 - 38*x^5 - 24*x^6 + 8*x^7) / (1 - 3*x - 4*x^2 + 2*x^3)^2. - Colin Barker, Jan 18 2019

A269055 Number of 4Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

81, 666, 3258, 24192, 149358, 971844, 6053094, 37741920, 231943614, 1417576284, 8599619586, 51899214960, 311654917170, 1863739501308, 11103704855298, 65935768579488, 390381077316294, 2305171593612444, 13579182450069246
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Row 4 of A269052.

Examples

			Some solutions for n=4
..0..0..1..2. .1..2..1..0. .1..2..1..0. .2..2..2..2. .1..0..1..2
..1..0..1..0. .0..0..1..0. .2..2..2..2. .2..2..1..0. .1..2..1..2
..1..2..1..2. .1..0..1..0. .2..1..2..1. .2..2..1..0. .2..2..2..2
..1..0..2..2. .1..0..0..0. .2..1..0..1. .1..2..1..2. .1..1..2..1
		

Crossrefs

Cf. A269052.

Formula

Empirical: a(n) = 6*a(n-1) +23*a(n-2) -102*a(n-3) -288*a(n-4) +250*a(n-5) +787*a(n-6) -238*a(n-7) -741*a(n-8) +124*a(n-9) +196*a(n-10) -16*a(n-11) -16*a(n-12) for n>14

A269056 Number of 5Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

243, 2430, 17346, 183072, 1643376, 15547380, 140497512, 1273499256, 11354964888, 100764874440, 886829123676, 7765850889120, 67643548943508, 586749197487720, 5069733374448192, 43657996370224608, 374818434125094900
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2016

Keywords

Comments

Row 5 of A269052.

Examples

			Some solutions for n=4
..0..1..2..1. .1..0..1..0. .0..1..2..1. .0..0..1..0. .1..1..0..0
..2..1..2..1. .0..0..1..2. .0..1..0..1. .1..2..1..2. .0..0..0..0
..2..1..0..2. .1..0..1..2. .0..1..2..1. .2..2..2..2. .0..0..0..1
..0..1..2..1. .0..0..1..0. .0..1..0..0. .2..1..2..1. .0..0..0..1
..0..1..2..2. .0..0..1..0. .0..0..0..0. .0..1..2..2. .1..0..0..1
		

Crossrefs

Cf. A269052.

Formula

Empirical: a(n) = 12*a(n-1) +26*a(n-2) -566*a(n-3) -123*a(n-4) +8804*a(n-5) -4121*a(n-6) -59620*a(n-7) +55115*a(n-8) +183692*a(n-9) -256127*a(n-10) -211910*a(n-11) +498819*a(n-12) -48036*a(n-13) -371692*a(n-14) +214008*a(n-15) +43848*a(n-16) -64656*a(n-17) +8640*a(n-18) +5184*a(n-19) -1296*a(n-20) for n>22
Showing 1-10 of 12 results. Next