cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269057 Number of 6Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

This page as a plain text file.
%I A269057 #4 Feb 18 2016 11:42:33
%S A269057 729,8586,90450,1350672,17696520,242861616,3193266318,42102137568,
%T A269057 545920367142,7046149966992,90162767011920,1148006491599288,
%U A269057 14536545425942976,183300000374262900,2302096893418466826
%N A269057 Number of 6Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
%C A269057 Row 6 of A269052.
%H A269057 R. H. Hardin, <a href="/A269057/b269057.txt">Table of n, a(n) for n = 1..210</a>
%F A269057 Empirical: a(n) = 12*a(n-1) +182*a(n-2) -1820*a(n-3) -15113*a(n-4) +101664*a(n-5) +646022*a(n-6) -3003324*a(n-7) -15725808*a(n-8) +55305760*a(n-9) +234926070*a(n-10) -698528578*a(n-11) -2270736611*a(n-12) +6320752450*a(n-13) +14600825558*a(n-14) -41434331996*a(n-15) -62768577651*a(n-16) +196263429930*a(n-17) +176943063476*a(n-18) -669462409316*a(n-19) -305019512324*a(n-20) +1647405492614*a(n-21) +230358934675*a(n-22) -2942270801898*a(n-23) +243588718325*a(n-24) +3841770422896*a(n-25) -923967990222*a(n-26) -3689384232910*a(n-27) +1300617284437*a(n-28) +2614259101122*a(n-29) -1127033659748*a(n-30) -1366254718948*a(n-31) +660843537364*a(n-32) +524090586634*a(n-33) -269727615782*a(n-34) -146010681184*a(n-35) +76928224259*a(n-36) +28983533038*a(n-37) -15160113967*a(n-38) -3964319226*a(n-39) +2009807783*a(n-40) +352152984*a(n-41) -170267256*a(n-42) -18138336*a(n-43) +8296524*a(n-44) +408240*a(n-45) -176400*a(n-46) for n>48
%e A269057 Some solutions for n=3
%e A269057 ..1..1..2. .1..0..1. .0..0..0. .0..0..2. .1..2..1. .2..0..0. .0..0..1
%e A269057 ..2..2..2. .0..0..1. .1..0..0. .0..1..0. .1..2..1. .0..1..0. .1..0..0
%e A269057 ..1..2..1. .1..0..0. .1..0..0. .0..0..0. .1..2..2. .0..1..0. .1..0..1
%e A269057 ..2..2..2. .0..0..1. .1..2..1. .1..0..0. .1..0..1. .2..1..2. .1..0..1
%e A269057 ..1..2..1. .0..1..0. .1..2..1. .1..0..1. .0..0..0. .2..2..2. .1..0..1
%e A269057 ..2..2..2. .0..0..0. .2..2..1. .1..2..1. .0..1..0. .2..2..2. .1..0..1
%Y A269057 Cf. A269052.
%K A269057 nonn
%O A269057 1,1
%A A269057 _R. H. Hardin_, Feb 18 2016