This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269065 #20 Feb 16 2025 08:33:30 %S A269065 1,2,4,1,2,3,6,1,2,4,8,1,3,9,1,2,5,10,1,2,3,4,6,12,1,2,7,14,1,3,5,15, %T A269065 1,2,4,8,16,1,2,3,6,9,18,1,2,4,5,10,20,1,3,7,21,1,2,11,22,1,2,3,4,6,8, %U A269065 12,24,1,5,25,1,2,13,26,1,3,9,27,1,2,4,7,14,28,1,2,3,5,6,10,15,30,1,2,4,8,16,32,1,3,11,33,1,2,17,34 %N A269065 Irregular triangle read by rows: row n lists divisors of n-th composite number. %C A269065 Subsequence of A027750. %C A269065 Row sums give A073255. %C A269065 Right border gives A002808. %H A269065 Ilya Gutkovskiy, <a href="/A269065/a269065.pdf">Extended example</a> %H A269065 Ilya Gutkovskiy, <a href="/A269065/a269065_1.pdf">Graphic additions</a> %H A269065 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompositeNumber.html">Composite Number</a> %H A269065 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Divisor.html">Divisor</a> %H A269065 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a> %e A269065 Triangle begins: %e A269065 1, 2, 4; %e A269065 1, 2, 3, 6; %e A269065 1, 2, 4, 8; %e A269065 1, 3, 9; %e A269065 1, 2, 5, 10; %e A269065 1, 2, 3, 4, 6, 12; %e A269065 1, 2, 7, 14; %e A269065 1, 3, 5, 15 %e A269065 1, 2, 4, 8, 16; %e A269065 1, 2, 3, 6, 9, 18; %e A269065 1, 2, 4, 5, 10, 20; %e A269065 1, 3, 7, 21; %e A269065 1, 2, 11, 22; %e A269065 1, 2, 3, 4, 6, 8, 12, 24; %e A269065 1, 5, 25; %e A269065 1, 2, 13, 26; %e A269065 1, 3, 9, 27; %e A269065 1, 2, 4, 7, 14, 28; %e A269065 1, 2, 3, 5, 6, 10, 15, 30; %e A269065 1, 2, 4, 8, 16, 32; %e A269065 1, 3, 11, 33; %e A269065 1, 2, 17, 34; %e A269065 ... %t A269065 Flatten[Table[Divisors[Composite[n]], {n, 22}]] %o A269065 (PARI) tabf(nn) = forcomposite(c=1, nn, print(divisors(c), ", ")); \\ _Michel Marcus_, Feb 21 2016 %Y A269065 Cf. A002808, A027750, A035004 (row length), A133021, A133031, A138881. %K A269065 nonn,tabf %O A269065 1,2 %A A269065 _Ilya Gutkovskiy_, Feb 21 2016