A269070 Number of n X 3 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
7, 27, 123, 537, 2343, 10167, 43959, 189465, 814359, 3491691, 14937987, 63778065, 271799175, 1156345287, 4911870063, 20834207313, 88251723687, 373358554971, 1577691954507, 6659543294313, 28081651307943, 118299768626103
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0. .0..0..1. .0..1..0. .1..0..1. .1..0..1. .1..0..0. .1..0..1 ..0..0..0. .0..1..0. .1..0..0. .0..0..0. .0..0..0. .1..0..1. .0..0..0 ..1..0..0. .0..0..0. .1..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..0 ..1..0..1. .1..0..1. .0..0..1. .0..0..1. .1..0..0. .0..0..0. .1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A269075.
Formula
Empirical: a(n) = 10*a(n-1) - 31*a(n-2) + 24*a(n-3) + 21*a(n-4) - 18*a(n-5) - 9*a(n-6).
Empirical g.f.: x*(7 - 43*x + 70*x^2 - 24*x^3 - 9*x^4 - 9*x^5) / (1 - 5*x + 3*x^2 + 3*x^3)^2. - Colin Barker, Jan 18 2019