A269072 Number of nX5 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
23, 185, 1887, 17713, 165607, 1529241, 14011359, 127528641, 1154377943, 10400164377, 93314875007, 834244316721, 7434343205095, 66061046189497, 585498663953471, 5177144091416833, 45680435610848791, 402277442193052665
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0..1. .1..0..0..1..0. .1..0..1..0..1. .1..0..1..0..1 ..1..0..0..0..1. .1..0..1..0..0. .1..0..1..0..0. .0..0..1..0..1 ..1..0..0..0..0. .1..0..0..0..1. .0..0..0..0..1. .0..1..0..0..1 ..0..0..0..0..1. .0..0..0..0..1. .0..0..0..1..0. .0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269075.
Formula
Empirical: a(n) = 24*a(n-1) -198*a(n-2) +584*a(n-3) +137*a(n-4) -2864*a(n-5) +1132*a(n-6) +4336*a(n-7) -1391*a(n-8) -2280*a(n-9) +90*a(n-10) +200*a(n-11) -25*a(n-12)
Comments