A269073 Number of nX6 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
41, 489, 7477, 102545, 1383105, 18220241, 236272677, 3024972401, 38333973609, 481701017577, 6010309951205, 74542025956769, 919716929870465, 11296618314880209, 138204770920790229, 1684906034464128193
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..0..0..0. .0..0..1..0..0..1. .1..0..0..0..0..1. .0..0..1..0..1..0 ..0..0..0..0..1..0. .1..0..0..1..0..0. .0..0..0..0..0..0. .1..0..1..0..0..0 ..0..0..1..0..1..0. .1..0..0..0..0..0. .0..0..1..0..0..1. .0..0..0..0..1..0 ..1..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1. .1..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269075.
Formula
Empirical: a(n) = 28*a(n-1) -230*a(n-2) +192*a(n-3) +3805*a(n-4) -5776*a(n-5) -27808*a(n-6) +25744*a(n-7) +101333*a(n-8) -13916*a(n-9) -149690*a(n-10) -66848*a(n-11) +23183*a(n-12) +9888*a(n-13) -2304*a(n-14)
Comments